
POISSON PROCESS (PP): State space consists of all non-negative in-
tegers, time is continuous.

The process is time homogeneous, with independent increments and

P0(t) = 1− λ · t+ o(t)

P1(t) = λ · t+ o(t)

P2(t) = o(t)

...

With the help of the generating function P (z, t) of the P0(t), P1(t), ... sequence,
we have derived:

Pn(t) =
λntn

n!
e−λt

The correlation between N(t) and N(t+ s) is

1
√
1 + s

t

The conditional distribution ofN(s), given thatN(t) = n (and s < t) is B(n, p =
s
t ).

To simulate the process (create one random realization of it), from time 0 to
time T, we can either

1. keep on adding independent, exponentially distributed (with mean 1
λ )

inter-arrival times, or

2. draw one random integer from a Poisson distribution with the mean of
Λ ≡ λ · T , then generate a RIS from U(0, T ), and take the arrival time to
be the corresponding order statistics (i.e. ’sorting’ the sample).

Non-homogenous version of PP allows λ to be (a specific, given) function
of t (often stepwise). The probability of (exactly) n arrivals during time interval
(t1, t2) is then computed by

Λn

n!
e−Λ

where

Λ =
t2∫

t1

λ(t) dt

We can split a (homogeneous) PP into two independent processes by ’flip-
ping a coin’ to decide whether the current arrival goes ’left’ or ’right’. The
corresponding λ as split accordingly (λleft = p · λ, λright = q · λ).

Two (homogeneous)PPs ’competing’. Probability that the first will reach
the value of n before the second one reaches m is

pn
m−1∑

i=0

(
n−1+i

i

)
qi

1



PP in 2 or more dimensions. The number of ’dandelions’ in an area of size
A has the Poisson distribution with Λ = A · λ, where λ is the average density.

M/G/∞ queue. X(t) [customers being served] and Y (t) [customers who
have already left] are independent, Poisson-type RVs, with Λx = λ · t · pt and
Λy = λ · t · qt, where

pt =
1

t

∫ t

0

[1−G(u)] du

G(u) being the distribution function of the service times. Note that limt→∞Λx =
λ · µsev.

Compound (cluster) PP. Its MGF is

exp{−λt[1−M(u)]}

M being the MGF of the ’size’ distribution. For integer-type ’size’ distribu-
tion (’cluster’ precess), M(u) can be replaced by the corresponding PGF P (z),
getting the PGF of Y (t). In either case

E [Y (t)] = λtµsize

Var [Y (t)] = λt(σ2size + µ2size)

PP of random duration. The PGF of N(T ) is

M [λ(z − 1)]

where M is the MGF of T. This implies

E [N(T )] = λµT

Var [N(T )] = λµT + λ2σ2T

PURE BIRTH PROCESS (PB): Only one axiom changes, namely

Pn,n+1(t) = λn · t+ o(t)

A special case is the Yule process with

λn ≡ n · λ

We define the corresponding PGF

Pi(z, t) ≡
∞∑

n=i
Pi,n(t) z

n

which must meet the following PDEλ

•

Pi(z, t) = λ z(z − 1)P ′
i (z, t)

subject to
Pi(z, 0) = zi
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The solution:

P (z, t) =

(
z pt

1− z qt

)i

(negative binomial), where
pt = e−λt

PURE DEATH PROCESS decreases (rather than increases), one unit
at a time, at a rate denoted µn.

Special case:
µn ≡ n · µ

leads to
•

Pi(z, t) = µ (1− z)P ′
i (z, t)

and
Pi(z, t) = (qt + pt z)

i

where pt = e−µt.

Time till extinction has the following distribution function

Pr(T ≤ t) = (1− e−µ t)i

the expected value
1

µ

(
1 + 1

2 +
1
3 + ...+ 1

i

)

and variance
1

µ2

(
1 + 1

22 +
1
32 + ...+ 1

i2

)

BIRTH AND DEATH PROCESSES can both increase (at the rate of
λn) or decrease (at the rate of µn) one unit at a time. We will consider several
special cases.

Linear Growth:

λn = n · λ
µn = n · µ

leading to
•

Pi(z, t) = (z − 1)(λz − µ)P ′
i (z, t)

and

Pi(z, t) =

(
rt + (1− rt)

pt z

1− qt z

)i

(a composition of Binomial and Geometric distributions), where

pt ≡ (λ− µ) e−(λ−µ) t

λ− µe−(λ−µ) t

rt ≡ µ(1− e−(λ−µ) t)

λ− µe−(λ−µ) t
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The corresponding expected value and variance:

i · e(λ−µ) t

i · λ+ µ

λ− µ
(e(λ−µ) t − 1) e(λ−µ) t

Probability of extinction (already) at time t is rit, probability of ultimate
extinction is ri∞ (certain when λ ≤ µ).

Expected time till extinction (meaningful only when this is certain):

ω1 ≡
1

λ
ln

µ

µ− λ

when i = 1, and generated by

ωi+1 =
(
1 + µ

λ

)
ωi − µ

λ ωi−1 − 1
i λ

when i > 1 (utilizing ω0 = 0).
Linear Growth with Immigration:

λn = n · λ+ a

µn = n · µ

leading to

•

P i(z, t) = (z − 1)(λ z − µ)P ′
i (z, t) + a(z − 1)Pi(z, t)

(non-homogeneous), having the following i = 0 solution:

P0(z, t) =

(
pt

1− z qt

)a/λ

(modified negative binomial), with the mean of
aqt

λpt
and variance

aqt

λp2t
.

The general (any i) solution is:

Pi(z, t) =

(
pt

1− z qt

)a/λ
·
(
rt + (1− rt)

pt z

1− qt z

)i

The stationary distribution (only when λ < µ) is

Pi(z,∞) =
(

µ− λ

µ− λ z

)a/λ

M/M/∞ queue:

λn = a

µn = n · µ
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leads to
•

P i(z, t) = µ (1− z)P ′
i (z, t) + a(z − 1)Pi(z, t)

Its solution is

Pi(z, t) = exp

(
a qt

µ
· (z − 1)

)
· (qt + pt z)

i

where now pt = e−µt. This is a convolutions (i.e. independent sum) of Poisson
(with the mean of a qtµ ) and binomial. Clearly, the asymptotic distribution is

Pi(z,∞) = exp
(
a

µ
· (z − 1)

)

N welders:

λi = λ · (N − n)

µi = µ · n

leading to

•

P i(z, t) = (1− z)(µ+ λz)P ′
i (z, t) +N λ (z − 1)Pi(z, t)

Solution:
Pi(z, t) = (q

(1)
t + p

(1)
t z)i · (q(2)t + p

(2)
t z)N−i

(a convolution of two binomials), where

p
(1)
t =

λ+ µe−(λ+µ) t

λ+ µ

p
(2)
t =

λ(1− e−(λ+µ) t)

λ+ µ

Clearly

Pi(z,∞) =
(
µ+ λ z

µ+ λ

)N

Other (more complicated) models:

We give up on Pi(z, t), and try to get the corresponding stationary distri-
bution (t→∞) only, by:

pn =
λ0λ1λ2...λn−1

µ1µ2µ3...µn
p0

where

p0 =

(
∞∑

n=0

λ0λ1λ2...λn−1

µ1µ2µ3...µn

)−1

If the sum is infinite (diverges), stationary distribution does not exist.
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Examples:

M/M/1 queue:

pn = ρn(1− ρ)

where ρ ≡ λ
µ .

Average number of people in the system: ρ
1−ρ , people waiting:

ρ2

1−ρ . SUF: ρ.

Average length of idle period: 1
λ , busy period: 1

µ−λ , busy cycle: the sum of the
two.
M/M/c queue:

pn =






ρn

n!Γ
n ≤ c

ρn

c!Γcn−c
n ≥ c

where

Γ =
c−1∑

i=0

ρi

i!
+

ρc

c!(1− ρ
c )

Average number of busy servers is ρ, average length of the actual queue is

ρc

c!Γ
·

ρ
c

(1− ρ
c )
2

The expected length of full-utilization period is (c · µ− λ)−1. �
When State 0 is absorbing (λ0 = 0), stationary mode is impossible, and

the main issue is the probability of ultimate absorption, given the process
starts in State m (denoted am). This is computed by

dn =

n∏

k=1

µ
k

λk

Sum

am = 1−
m−1∑

n=0

dn

(certain when the Sum diverges).
When absorption is certain, the expected time till it happens is computed,

recursively, by

ω0 = 0

ω1 =
∞∑

i=1

λ1λ2...λi−1

µ1µ2...µi−1µi

ωn+1 = (1 +
µn
λn
)ωn −

µn
λn

ωn−1 −
1

λn

(may turn out to be infinite - not typical though).
GENERAL TIME-CONTINUOUS MARKOV PROCESSES
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can move, instantaneously, from any state to any other state. For simplicity,
we consider only finitely many (usually a handful) of states. The corresponding
rates can be organized in a matrix form (leaving the main diagonal elements
blank). When the main diagonal elements are defined to be the negative sum
of the remaining row elements, the resulting matrix A is called the infinitesimal
generator of the process. The probability of being in State j at time t, given
that at time 0 the process starts in State i, is given by the (i, j)th element of
P(t), where P(t) is a solution to

•

P(t) = AP(t)

(Kolmogorov’s forward equations), namely

P(t) = exp(At)

This requires computing a function of a square matrix, say B, which is done
in general by

f(B) = C1f(ω1) +C2f(ω2) + ...+CN f(ωN)

where ωk (k = 1..N) are the matrix’s eigenvalues, and Ck are the corresponding
constituent matrices (N is the matrix’s size). They can be computed based on

N∑

k=1

Ck = I

N∑

k=1

ωkCk = A

N∑

k=1

ω2kCk = A
2

...
N∑

k=1

ωN−1k Ck = A
N−1

When two eigenvalues (say ω1 = ω2) are identical, C1f(ω1) + C2f(ω2) + ...

changes to C1f(ω1) +C2f
′(ω1) + ... throughout all this.

BROWNIAN MOTION
has both the state space, i.e. X(t), and time run on a continuous scale. It is

based on the assumptions of continuity and of independent increments, implying
that

X(t) ∈ N (x0 + d · t,
√
c · t)

where d is the drift parameter, and c is the diffusion coefficient.
When d = 0, we have:
Probability that a is never reached by time T , or

Pr

(
max
0≤t≤T

X(t) < a | X(0) = x0

)
= 1− 2Pr

(
Z >

a− x0√
c · T

)
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when a > x0 (with the obvious changes for a < x0).
Probability of X(T ) > y without ever reaching z, or

Pr

(
X(T ) > y ∩ min

0≤t≤T
X(t) > z | X(0) = x

)
=

Pr{Z >
y − x√
c · T

} − Pr{Z >
y + x− 2z√

c · T
}

where y > z and x > z (with the obvious changes for y < z and x < z).
Probability of returning to the starting value (at least once) during a (t0, t1)

interval, or

Pr

(
max
t0<t<t1

X(t) > x ∩ min
t1<t<t1

X(t) < x | X(0) = x

)
=

2

π
arccos

√
t0

t1

When d has any value, we have only one result:
The distribution of X(t), given that ... X(t0) = x0, X(t1) = x1, X(t2) = x2,

X(t3) = x3, ...(where ... t0 < t1 < t < t2 < t3 < ....) is normal, with the mean
of

x1(t2 − t) + x2(t− t1)

t2 − t1

(linear interpolation) and the standard deviation of

√

c
(t2 − t)(t− t1)

t2 − t1
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