POISSON PROCESS (PP): State space consists of all non-negative in-
tegers, time is continuous.
The process is time homogeneous, with independent increments and

Po(t) = 1—A-t+o()
Py(t) = oft)

With the help of the generating function P(z,t) of the Py(t), Pi(t), ... sequence,

we have derived:
P, (t) = ATER
n(t) = n! ¢

The correlation between N(t) and N(t+ s) is

1
1+

1)

The conditional distribution of N(s), given that N(t) = n (and s < t) is B(n,p =
S
1)
To simulate the process (create one random realization of it), from time 0 to
time 7', we can either

1. keep on adding independent, exponentially distributed (with mean %)

inter-arrival times, or

2. draw one random integer from a Poisson distribution with the mean of
A = X-T, then generate a RIS from (0, T), and take the arrival time to
be the corresponding order statistics (i.e. ’sorting’ the sample).

Non-homogenous version of PP allows A to be (a specific, given) function
of t (often stepwise). The probability of (exactly) n arrivals during time interval
(t1,t2) is then computed by

where

We can split a (homogeneous) PP into two independent processes by "flip-
ping a coin’ to decide whether the current arrival goes ’left’ or ’right’. The
corresponding A as split accordingly (Aiefy = D+ A, Aright = ¢ - A).

Two (homogeneous) PPs ’competing’. Probability that the first will reach
the value of n before the second one reaches m is

nmil n—1+414\ 2
Pt ()



PP in 2 or more dimensions. The number of ’dandelions’ in an area of size
A has the Poisson distribution with A = A - A, where A is the average density.
M/G/oo queue. X(t) [customers being served] and Y (¢) [customers who
have already left] are independent, Poisson-type RVs, with Ay = A-¢ - p; and
Ay =Xt ¢, where
t
Pt = 1/ [1—-G(u)] du
t Jo

G(u) being the distribution function of the service times. Note that lim; ., Ax =
A Msevy.
Compound (cluster) PP. Its MGF is
exp{—At[l — M(u)]}

M being the MGF of the ’size’ distribution. For integer-type ’size’ distribu-
tion ("cluster’ precess), M (u) can be replaced by the corresponding PGF P(z),
getting the PGF of Y (¢). In either case

EY(#)] = Mgy,
Var[Y(t)] = M(0%,e + pise)
PP of random duration. The PGF of N(T) is
MIAGz - 1)
where M is the MGF of T. This implies

BN = A
Var [N(T)] = Aup + Mo2

PURE BIRTH PROCESS (PB): Only one axiom changes, namely
Pynt1(t) = A -t 4 0(2)
A special case is the Yule process with
A =n-A

We define the corresponding PGF

Pi(z,t) = i Pz',n(t) z"

n=t

which must meet the following PDEA

Pi(z,t) = Az(z — 1)Pl(z,1)

subject to A
Pi(Z, 0) =z



The solution: )
2Pt
P(z,t) = | ———
0= (122)

At

(negative binomial), where
pr=e
PURE DEATH PROCESS decreases (rather than increases), one unit

at a time, at a rate denoted p,,.
Special case:

leads to .
Pi(z7t) =K (1 - Z)P;(Z,t)
and
Pi(z,t) = (g +pr2)'
where p; = e7H.
Time till extinction has the following distribution function

Pr(T <t)=(1—e M)

the expected value

1
;@+%+§+m+%)

and variance 1
Eu+%+%+m+ﬁ

BIRTH AND DEATH PROCESSES can both increase (at the rate of
An) or decrease (at the rate of y,,) one unit at a time. We will consider several
special cases.

Linear Growth:

)\n =
Hn
leading to
Pi(z,1) = (2 = 1) (Az — wFl(=,1)
and

MM)Gﬁargmzy
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(a composition of Binomial and Geometric distributions), where

(A= p)e” At

pe = A — ‘u,e*()\*l‘) t
— e~ (A=)t

= pl—e )
A — lu,e*()\*l‘)t



The corresponding expected value and variance:

i eA—mit
i AP Ot )t
A—p
Probability of extinction (already) at time ¢ is ri, probability of ultimate
extinction is 7% (certain when A < pu).
Expected time till extinction (meaningful only when this is certain):
1 14

=-1
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when ¢ = 1, and generated by
wir1 = (1+4§)wi — w1 — 75

when ¢ > 1 (utilizing wo = 0).
Linear Growth with Immigration:

A = n-A+a
[ = mMop
leading to

Pi(z,t) = (z —1)(Az — p) P/ (2,t) + a(z — 1) Pi(2,t)

(non-homogeneous), having the following ¢ = 0 solution:

Po(z,t) = (Ly/k

I1—zq

a a
(modified negative binomial), with the mean of )\—Qt and variance /\_q,;
Pt Py
The general (any ¢) solution is:

Pt “/A btz '
R(Z,t)(m) ~<T’t+(17"t)1_qtz>

The stationary distribution (only when A < ) is

a/X\
b= A
Pi(z,00) =
(5 20) (N)\Z>
M/M/co queue:
An a



leads to

Pi(z,t) = p(1 = 2)P(2,1) + a(z — 1) Pi(z,1)
Its solution is
a 7
Pt =exp (S (2= 1)) (0t 2r2)

where now p; = e"#!. This is a convolutions (i.e. independent sum) of Poisson
(with the mean of “Tq‘) and binomial. Clearly, the asymptotic distribution is

R(evoe) —exp (% (- 1)

N welders:

Ai = A (N—n)
pi = pem
leading to
Pi(z,t) = (1= 2)(u+ A2)Pl(5,8) + N A (2 — 1) P(2, 1)
Solution:

Pi(z1) = (a") +p1V2) - (a7 +pi? 2V

(a convolution of two binomials), where

t A_i_u
p(z) _ )\(1 _ ef(AJru)t)
t )\+M
Clearly
N
LAz
Pi(z,00) =
(5:0) ( ptA )

Other (more complicated) models:

We give up on P;(z,t), and try to get the corresponding stationary distri-
bution (¢t — oo) only, by:
 AoMAa A

Pn=—"——""""o
Hyflofhg---fp
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Ko g -y,

n=0

where

If the sum is infinite (diverges), stationary distribution does not exist.



Examples:
M/M/1 queue:
pn=p"(1-p)
where p = 2.
Average number of people in the system: —L, people waiting: £—. SUF: p.

Average length of idle period: %, busy period: #7 , busy cycle: the sum of the
two.
M/M/c queue:

P
Pn = n!pl:l B

n
clI'en—c -
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Average number of busy servers is p, average length of the actual queue is

where
C

1fﬁ)

c
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The expected length of full-utilization period is (c- pu— A)~t. W

When State 0 is absorbing (Ag = 0), stationary mode is impossible, and
the main issue is the probability of ultimate absorption, given the process
starts in State m (denoted a,,). This is computed by

By
Ak
" Sum
m—1
am = 1-— § dn
n=0

(certain when the Sum diverges).
When absorption is certain, the expected time till it happens is computed,
recursively, by

w():()

o — i)\l)\g...)\i_l
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n = 1
wnpr = (14 M o

(may turn out to be infinite - not typical though).
GENERAL TIME-CONTINUOUS MARKOV PROCESSES



can move, instantaneously, from any state to any other state. For simplicity,
we consider only finitely many (usually a handful) of states. The corresponding
rates can be organized in a matrix form (leaving the main diagonal elements
blank). When the main diagonal elements are defined to be the negative sum
of the remaining row elements, the resulting matrix A is called the infinitesimal
generator of the process. The probability of being in State j at time ¢, given
that at time O the process starts in State i, is given by the (i, j)"* element of
P(t), where P(t) is a solution to

P(t) = AP(¢)
(Kolmogorov’s forward equations), namely
P(t) = exp(At)

This requires computing a function of a square matrix, say B, which is done
in general by

fB) =Cif(wi) +Cof(wz) + ... + Cn f(wn)

where wy, (k = 1..N) are the matrix’s eigenvalues, and Cy, are the corresponding
constituent matrices (N is the matrix’s size). They can be computed based on

N
SSCp = I
k=1
N
Zwk(Ck = A
k=1
N
Zwi(ck = A?
k=1
N
Zwé\fflck — AN—l

>
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When two eigenvalues (say w; = ws) are identical, C;f(w1) + Cof(w2) + ...
changes to Cy f(w1) + C2f'(w1) + ... throughout all this.

BROWNIAN MOTION

has both the state space, i.e. X (t), and time run on a continuous scale. It is
based on the assumptions of continuity and of independent increments, implying
that

X(t)eN(xo+d-t,Ve-t)
where d is the drift parameter, and c is the diffusion coefficient.

When d =0, we have:
Probability that a is never reached by time T', or

o o . a — Xo
Pr(orgtaéxTX(t)<a|X(0)—x0)—1 2Pr<Z>m)



when a > z¢ (with the obvious changes for a < o).
Probability of X (T') > y without ever reaching z, or

Pr (X(T)>yﬂor<r}fiilTX(t)>z |X(0):x> =

y+ao—2z }
\/_ \/_

where y > z and « > z (with the obvious changes for y < z and = < z2).
Probability of returning to the starting value (at least once) during a (¢, t1)
interval, or

Pr{Z >

} Pr{Z >

t1<t<ty

2 [t
— arccos 4/ —
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When d has any value, we have only one result:

The distribution of X (), given that ... X (tog) = xo, X(t1) = 1, X (t2) = x2,
X(t3) = m3, ...(where ... tg <1 <t <ty <tg<...) is normal, with the mean
of

Pr(togl?é(th()>xm min X(¢) <z |X(O)x) =

x1(te —t) + x2(t — 1)
o — 11

(linear interpolation) and the standard deviation of

\/c (t2 )t~ 1)
to —t1




