- 1. Consider a Pure-Birth Markov process with $\lambda_n = 2.43 \times n$ per hour, and the initial value of X(0) = 3. Find:
 - (a) $\Pr\{X(32\min) < 12\}$
 - (b) $\blacksquare \mathbb{E}[X(15\min 37 \operatorname{sec})]$ and the corresponding standard deviation.
- 2. Consider a Pure-Death Markov process with $\mu_n = 2.43 \times n$ per hour, and the initial value of X(0) = 31. Find:
 - (a) $\Pr\{X(32\min) < 12\}$
 - (b) $\blacksquare \mathbb{E}[X(15 \min 37 \operatorname{sec})]$ and the corresponding standard deviation.
 - (c) Probability that the process will become extinct *during* its second hour.
 - (d) Expected time till extinction and the corresponding standard deviation.
- 3. Consider a Linear-Growth process with the following rates

$$\lambda_n = 3.1 \times n$$
 per hour
 $\mu_n = 4.1 \times n$ per hour

and the initial value of 4 members. Find

- (a) the probability that, 40 minutes later, the process will have more than 4 members,
- (b) the expected value and standard deviation of the value of X(40 min),
- (c) the probability that the process becomes extinct during the first 23 min.,
- (d) the expected time till extinction, and the corresponding standard deviation.
- 4. Consider a Linear-Growth process with the following rates

$$\lambda_n = 4.1 \times n$$
 per hour
 $\mu_n = 3.1 \times n$ per hour

and the initial value of 4 members. Find

- (a) the probability that, 40 minutes later, the process will have more than 4 members,
- (b) \blacksquare the expected value and standard deviation of X(33 min).
- (c) the probability that the process becomes extinct during the first 23 min.,
- (d) \blacksquare the probability of ultimate extinction.

5. \blacksquare Consider the following PDE

$$z \dot{P}(z,t) + e^z \cdot P'(z,t) = 0$$

- (a) Find its general solution.
- (b) Find the solution which meets

$$P(z,0) = \ln(1+z) - z$$