- 1. Consider one-dimensional Brownian motion with no drift, an absorbing barrier at zero, and $c = 3 \frac{\text{cm}^2}{\text{sec}}$, starting at X(0) = 4 cm. Calculate the probability of:
 - (a) the process getting absorbed within the first 15 seconds,
 - (b) 10 cm < X(15 sec.) < 20 cm.
- 2. Assuming a Brownian motion with $c = 13.8 \frac{\text{cm}^2}{\text{hr.}}$ and d = 0 (no absorbing barrier), find:
 - (a) $\Pr\{X(3 \text{ hours}) > -4 \text{ cm} | X(0) = 1 \text{ cm}\},\$
 - (b) $\Pr\{X(24 \text{ hours}\} > 15 \text{ cm } \cap \min_{0 < t < 1 \text{ day}} X(t) > 0 \,|\, X(0) = 3 \text{ cm}\},\$
 - (c) $\Pr\{\max_{0 < t < 1 \text{ day}} X(t) > 15 \text{ cm} | X(0) = 0\}.$
- 3. Consider a Brownian motion with a drift of $-5.2 \frac{\text{mm}}{\text{hr}}$ and a diffusion coefficient of $7.3 \frac{\text{mm}^2}{\text{hr}}$. Evaluate:
 - (a) $\Pr\{X(10:13) < 26 \,\mathrm{mm} \,|\, X(9:31) = 30 \,\mathrm{mm}\}$
 - (b) $\Pr\{X(10:13) < 26 \,\mathrm{mm} \,|\, X(9:31) = 30 \,\mathrm{mm} \cap X(10:42) = 27 \,\mathrm{mm}\}$