Full credit given for three correct and complete answers.
Please, give all answers to at least four significant digit.
Open-book exam.
Duration: 50 minutes

1. Assuming that customers arrive at a rate which increases, linearly, from 11.3 per hour at 9:00, till noon when it reaches the value of 15.7 per hour. At 12:00, the rate suddenly increases to 17.9 per hour and stays that way for the duration of the lunch hour (till 13:00).
(a) Find the probability of fewer than 15 arrivals between 11:30 and 12:45.
(b) If t is the time elapsed since 9:00 (i.e. at 10:00 t will have the value of 1 , etc.), find the expression for

$$
\operatorname{Pr}\left(T_{2}<t\right)
$$

where T_{2} is the time of the arrival of the second customer (assume that $0<t<3$).
2. Suppose that customers arrive at the rate of 3.8 'clusters' per hour, where the size of each cluster has the following distribution

cluster size:	1	2	3	4
Pr:	0.36	0.42	0.18	0.04

(a) Find the expected number of clusters which arrive during the next 21 minutes, and the corresponding standard deviation.
(b) Find the expected number of customers who arrive during the next 21 minutes, and the corresponding standard deviation.
(c) What is the probability that the number of customers who arrive during the next 21 minutes is between 4 and 9 (inclusive)?
3. Consider a $M / G / \infty$ queue with service times of exactly 7 minutes each, and customers arriving at the rate of 9.3 per hour. Find
(a) the probability that, half an hour after opening, more than 3 customers have already left (having completed their service),
(b) the long-run percentage of time with more than three customers being serviced.
4. Customers arrive at a constant rate of 17 per hour, but each of them will make a purchase (instantly, we assume) with the probability of only 72%. Compute the probability that
(a) during the next half hour, the store gets at least 10 customers who buy something and (at the same time - this is a single question) not more than 5 who won't make any purchase.
(b) by the time the store gets its $7^{\text {th }}$ 'buying' customer, it has had no more than 4 'browsing' ones.
5. Suppose a gas station with an arrival rate of 10.7 customers per hour is open for a random time T, whose distribution is uniform between 8 and 9 hours.
(a) What is the expected number of customers served during this time, and the corresponding standard deviation?
(b) What is the probability of serving, during this time, fewer than 70 customers?

