
REVIEW OF MAIN CONCEPTS AND FORMULAS

Boolean algebra of events (subsets of a sample space)
DeMorgan’s formula:

A ∪B = Ā ∩ B̄
A ∩B = Ā ∪ B̄

The notion of conditional probability, and of mutual independence of two
or more events. The latter implies:

Pr(A | B) = Pr(A)

Pr(A | B ∩ C) = Pr(A)

Probability rules
Product rule:

Pr(A ∩B ∩ C) = Pr(A) · Pr(B | A) · Pr(C | A ∩B)

and

Pr(A ∪B ∪ C) = Pr(A) + Pr(B) + Pr(C)
−Pr(A ∩B)− Pr(A ∩ C)− Pr(B ∩ C) + Pr(A ∩B ∩ C)

Partition of sample space and total-probability formula:

Pr(B) = Pr(B|A1) · Pr(A1) + Pr(B|A2) · Pr(A2) + ...

...+Pr(B|Ak) · Pr(Ak)

and extensions of this (shortly).
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Random variables are either of the discrete (non-negative integers) or
continuous (real numbers) type.
For the former, their distribution is most often specified by spelling out

the corresponding probability function

Pr(X = i) ≡ fX(i)

for the latter, we need their probability density function (pdf for short),
defined by

lim
ε→0

Pr(x ≤ X < x+ ε)

ε
≡ fX(x)

We like to look at their graphs.

An alternate way is to specify the corresponding (cumulative) distribution
function, defined as

Pr(X ≤ x) ≡ FX(x)

The expected value (also called the mean) of a RV is computed by

E (X) =
X
All i

i · fX(i)

(discrete type), or

E (X) =
Z

All x

x · fX(x) dx

Since X = i is an event, and a collection of these, for all possible values of
i, a partition, a special case of total-probability formula reads:

Pr(B) =
X
All i

Pr(B | X = i) · f(i)

While at it, let me mention that this can be extended to X continuous, thus:

Pr(B) =

Z
All x

Pr(B | X = x)f(x) dx

The concept of probability function and, particularly, of pdf (called joint
pdf) can be extended to bi-variate and multivariate distributions.
We should then be able to find the marginal pdf of X by

fX(x) =

Z
All y|x

fXY (x, y) dy

and conditional pdf of Y given X = x by

fY |x(y) =
fXY (x, y)

fX(x)
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and the corresponding conditional mean:

E (Y | X = x) =

R
All y|x y · fXY (x, y)dy

fX(x)

In this context, we will need yet another extension of the total-probability
formula, namely

E(Y ) =
Z

All x

E(Y | X = x)f(x) dx

which I’ll call total-mean formula.

Moments of a RV (or its distribution) are either simple

E(Xk) =

Z
All x

xk · f(x) dx =
X
All i

ik · f(i)

(when k = 1, this is called the mean, or expected value, of X, and denoted µX),
or central

E[(X − µ)k] =

Z
All x

(x− µ)k · f(x) dx =
X
All i

(i− µ)k · f(i)

The most important of these is the variance (k = 2). The corresponding
standard deviation is σ ≡pVar(X).
There are bi-variate analogs of these, of which the most important is the

covariance (the first-first central moment):

E[(X − µX) · (X − µY )] =

Z
All x,y

(x− µ)(y − µ)fXY (x, y) dx

Computationally, it’s easier to do

Cov(X,Y ) = E(X · Y )− µX · µY
Independence of X and Y implies zero covariance (but not necessarily reverse).
And, based on these, we can define the correlation coefficient between

X and Y as

ρXY ≡
Cov(X,Y )

σX · σY
(must be between −1 and 1).

We know that, in general

E [g(X)] 6= g(µX)

unless the transformation is linear:

E(aX + b) = aµX + b
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This can be extended to any number of RVs, independent or NOT:

E(aX + bY + c) = aµX + bµy + c

There is also a similar important formula for the variance of a linear combination
of RVs:

Var(aX + bY + c) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

When X, Y , ... are independent, the formula simplifies (no covariances).

And two more important concepts:
Probability generating function (PGF) of a discrete-type RV:

P (z) = E
£
zX
¤
=
X
All i

zi · f(i)

and moment generating function (MGF) of a continuous-type RV:

M(u) = E
£
euX

¤
=

Z
All x

eux · f(x) dx

Based on each, we can easily compute the mean and standard deviation of X,
by either

µ = P 0(z)|z=1
E [X(X − 1)] = σ2 + µ2 − µ = P 00(z)|z=1

or

µ = M 0(u)|u=0
E
£
X2
¤
= σ2 + µ2 = M 00(u)|u=0

The PGF can also yield

f(i) =
P (i)(z)

¯̄
z=0

i!

inverting the MGF to get f(x) is more difficult (and we won’t try it).
To get a moment generating function of a linear transformation of X, we do

MaX+b(u) = ebu ·M(au)

Sum of two independent RVs, say V = X + Y
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We can instantly find its PGF (MGF) by simply multiplying the individual
PGFs (MGFs).
To get its pdf, we need to compute the so called convolution of fX(x) and

fY (y), thus

fV (v) =

Z
All x

fX(x) · fY (v − x) dx

The concept of random independent sample of size n, and the corresponding
sample mean

X̄ ≡
Pn

i=1Xi

n

also a random variable whose distribution has the same mean as the distribution
we are sampling, but its standard deviation is reduced by a factor of

√
n, thus

σX̄ =
σ√
n

(it clearly tends to 0 in the n → ∞ limit - this implies the Law of Large
Numbers).
Central Limit Theorem tells us that the shape of the X̄ distribution tends

(as n increases) to the Normal ’bell-shaped’ curve

regardless of the shape of the original distribution (this is true even when sam-
pling from a discrete distribution - know how to do continuity correction)!
Sum of N IIDs (independent, identically distributed RVs), where N is a

random variable itself, i.e.

SN ≡ X1 +X2 + ...+XN

has a PGF given by the following composition of the PGF of N, and of the
Xis.

PN [PX(z)]

(mathematically, a very simple operation).
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