
We know (from Fourier-series theory) that

ρk =
1

2π

∫ 2π

0

ω(β) cos(kβ)dβ

Introducing y ≡ exp(iβ), which implies that

cos(kβ) =
yk + y−k

2
and dβ =

dy

iy

this can be converted to

1

2πi

∮
ω(y)

(
yk−1 + y−k−1

2

)
dy (1)

where the integration is over the unit circle centered at 0 (counterclockwise).
The theory of contour integration tells us that the result is the sum of residues
of the integrand at all singularities inside this circle. Note that the ω (being,
originally, a function of

cosβ =
y + 1

y

2

has the ω(y) = ω( 1
y
) symmetry.

Expanding ω(y), which is a rational function of y, in terms of partial fractions
makes it quite easy to identify the singularities, and to find their residues. One
should realize that each term of this expansion will have the form of either

c · ym (2)

where c is a constant (different for different terms) and m is an integer (positive,
negative, or zero), or of

c

(y − λ)�
(3)

where c and λ �= 0 are two constants (potentially complex), and  is a positive
integer (usually equal to 1). Clearly any such term with complex c and λ
will have its complex conjugate counterpart. But, more importantly, due to
the y ↔ 1

y
symmetry, each term of the type c · ym must be ‘paired’ with the

corresponding c · y−m term (this time, with the same c), and similarly every
term of type (3) - regardless whether c and λ are complex or real - will have its
‘dual’ set of terms, given by the partial-fraction expansion of

c
(
1
y
− λ

)� =
cy�

(1− yλ)�
=
c
(
− 1
λ

)�
y�

(
y − 1

λ

)� (4)

namely

c

(
−
1

λ

)� �∑

j=0

(


j

)
λ−j

(
y − 1

λ

)j

1



(the details of which become irrelevant shortly). Note that the absolute value
of each λ must be different from 1 (to represent a stationary model).

One can prove that the contributions of cym and cy−m to (1) are identical
(for all positive-integer values of k); the same is true for the (3) and (4) pair (see
below). This means that we can divide terms of the partial-fraction expansion
of ω(y) into two parts:

1. those which have the form of either (2) with m negative or of (3) with
|λ| < 1,

2. all their dual terms - these consist of positive powers of y, and terms or
Type (3) with |λ| > 1, all easily identifiable.

The constant term is an exception to this, but since it contributes only to
ρ0 ≡ 1, we can ignore it. We have excluded the |λ| = 1 possibility which cannot
happen, as explained earlier.

All we have to do in the end is to find the sum of residues of terms of Type
1 and multiply the result by 2 (totally ignoring terms of Type 2, which would
contribute the same amount - that means we never need to utilize the last two
formulas). Note that multiplying by 2 is the same as replacing

(
yk−1 + y−k−1

2

)

in (1) by
(
yk−1 + y−k−1

)
- that’s what we will do from now on.

Proof. First we prove that

1

2πi

∮
ym
(
yk−1 + y−k−1

)
dy =

1

2πi

∮
y−m

(
yk−1 + y−k−1

)
dy = δm,k

when m is a positive integer. Note that δm,k is the Kronecker’s delta (equal to
1 when m = k, equal to 0 otherwise).

The result is quite obvious by realizing that the only power of y which
integrates (in the above sense) to 2πi is y−1 - all the other integer powers yield
zero. It is thus the ym−k−1 part of the first integral and the y−m+k−1 part
of the second integral which result in δm,k (the y

m+k−1 and y−m−k−1 terms
contribute 0).

Secondly, we have to deal with the

1

2πi

∮
(y − λ)−�

(
yk−1 + y−k−1

)
dy =

1

2πi

∮ (
− 1
λ

)�
y�

(
y − 1

λ

)�
(
yk−1 + y−k−1

)
dy

identity, assuming that |λ| = 1. The LHS integral has two singularities inside
the unit circle: one at 0 and the other at λ. The first one contributes (another
well-known result of contour integration):

1

k!
·
dk(y − λ)−�

dyk

∣∣∣∣
y=0

=
(−)(−− 1)...(−− k + 1)

k!
·(−λ)−�−k = (−1)�

(
+ k − 1

k

)
λ−�−k
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the second one adds

1

(− 1)!
·
dkyk−1

dy�−1

∣∣∣∣
y=λ

+
1

(− 1)!
·
dky−k−1
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(k − 1)(k − 2)...(k − + 1)
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(
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λ−�−k

Clearly, the second term cancels the contribution of the 0 singularity, with the
net result of

1

2πi

∮
(y − λ)−�

(
yk−1 + y−k−1

)
dy =

(
k − 1

− 1

)
λk−� (5)

The RHS integral has only the 0 singularity contributing (the y = 1
λ
singu-

larity is outside the unit circle), yielding
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·
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which is the same as (5).
We should mention that in the most common case of  = 1, this answer boils

down to λk−1 (for  = 2 we are getting (k − 1)λk−2, for  = 3 this becomes
(k−1)(k−2)

2 λk−3, etc.).

Example: Suppose

ω(β) =
12 + 6 cos(β)− 6 cos(2β)− 12 cos(3β)

17 + 8 cos(2β)

This is equivalent to

ω(y) = −
3

2
−
3

4

(
y +

1

y

)
+

15
32 +

5i
8

y − i
2

+
15
32 −

5i
8

y + i
2

+
15
8 −

5i
2

y − 2i
+

15
8 +

5i
2

y + 2i

where y = exp(iβ). We thus get (almost immediately)

ρk =

(
15

32
+
5i

8

)(
i

2

)k−1
+

(
15

32
−
5i

8

)(
−
i

2

)k−1
for k > 1

and

ρ1 =

(
15

32
+
5i

8

)
+

(
15

32
−
5i

8

)
−
3

4
=
3

16
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