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where n is an integer and ρ and r are two constants, each having a value
between −1 and 1, to a double integral in terms of new variables u = xy
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You may assume (correctly, as it turns out) that there is a one-to-one
correspondence between the old and the new pair of variables. Finding
the inverse of the Jacobian may be a helpful ‘shortcut’.
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into an dz integral by the following substitution

v =
1− ρrz
1− z

4. Using the formula from class, find
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where A is a general 4 by 4 matrix. Verify your answer at
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