
Distribution of the circular sample correlation coefficient for
Markov model

Circular Markov model:

Xi = ρXi−1 + εi

for i = 1, 2, ...n, but also Xn ≡ X0. This can be achieved by first starting with
X0 = 0 and then, in a second pass (using the same ε values), setting it to the
value of Xn from the first pass. It is easy to see that the corresponding pdf is

1− ρn

(2π)n/2σn
exp

µ
−
Pn

i=1(Xi − ρXi−1)2

2σ2

¶
1− ρn

(2π)n/2σn
exp

µ
−
Pn

i=1(1 + ρ2)X2
i − 2ρ

Pn
i=1Xi−1Xi

2σ2

¶
=

1− ρn

(2π)n/2σn
exp

µ
−X

TAX
2σ2

¶
(with the understanding that X0 = Xn), where

A =



1 + ρ2 −ρ 0 0 . . . −ρ
−ρ 1 + ρ2 −ρ 0 . . . 0

0 −ρ 1 + ρ2
. . . . . . 0

0 0 −ρ . . . −ρ ...
...

...
...
. . . 1 + ρ2 −ρ

−ρ 0 0 . . . −ρ 1 + ρ2


(the corresponding inverse is not so simple any more), and 1−ρn is the Jacobian
of the ε→ X transformation, namely

ε =



1 0 0 0 . . . −ρ
−ρ 1 0 0 . . . 0

0 −ρ 1
. . . . . . 0

0 0 −ρ . . . 0
...

...
...

...
. . . 1 0

0 0 0 . . . −ρ 1


X

Now, we define a circular serial correlation coefficient by

r =

Pn
i=1XiXi−1Pn

i=1X
2
i

≡ U

V

Its quite obvious that the distribution of r will be the same for any σ. We will
thus set σ = 1 from now on.
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The joint MGF
of V and U is, say M (t1, t2) , equals

1− ρn

(2π)n/2

Z
· · ·
Z
exp

µ
−X

TAX
2

¶
exp(t1

nX
i=1

X2
i + t2

nX
i=1

XiXi−1)dX1...dXn

=
1− ρn

(2π)n/2

Z
· · ·
Z
exp

µ
−X

TA1X
2

¶
dX1...dXn =

1− ρnp|A1|
where

A1 =



1 + ρ2 − 2t1 −ρ− t2 0 0 . . . −ρ− t2
−ρ− t2 1 + ρ2 − 2t1 −ρ− t2 0 . . . 0

0 −ρ− t2 1 + ρ2 − 2t1 . . . . . . 0

0 0 −ρ− t2
. . . −ρ− t2

...
...

...
...
. . . 1 + ρ2 − 2t1 −ρ− t2

−ρ− t2 0 0 . . . −ρ− t2 1 + ρ2 − 2t1


We note that this is a circular matrix, which in general has the form of

a1 a2 a3 a4 . . . an
an a1 a2 a3 . . . an−1

an−1 an a1 a2 . . . an−2
an−2 an−1 an a1 . . . an−3

...
...

...
...
. . .

...
a2 a3 a4 . . . an a1

Its easy to see that

λj = a1 + a2ωj + a3ω
2
j + ...+ anω

n−1
j

are n distinct eigenvalues of the previous matrix, where

ωj = cos
2πj

n
+ i sin

2πj

n

j = 1, 2, ...n are the n distinct, complex values of n
√
1.

Proof: Subtract λj from the main diagonal and multiply the resulting columns
by 1, ωj , ω2j , ...ω

n−1
j , respectively. One can then see that elements of each row

add up to 0.
The determinant is just the product of all eigenvalues. For our matrix A1

this means
nY
j=1

£
1 + ρ2 − 2t1 − (ρ+ t2)(ωj + ω−1j )

¤
=

(ρ+ t2)
n

nY
j=1

·
1 + ρ2 − 2t1

ρ+ t2
− (ωj + ω−1j )

¸
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To simplify this is a bit tricky, we introduce a new variable z by

z +
1

z
=
1 + ρ2 − 2t1

ρ+ t2

so that the previous expression becomesµ
ρ+ t2
z

¶n nY
j=1

£
z2 − z(ωj + ω−1j ) + 1

¤
=

µ
ρ+ t2
z

¶n nY
j=1

(ωj − z)(w−1j − z) =

µ
ρ+ t2
z

¶n
(1− zn)2

where we are taking |z| < 1. This is achieved by z = a − √a2 − 1, where
a = 1+ρ2−2t1

2(ρ+t2)
.

We thus have

M(t1, t2) =
1− ρn

1− zn
· zn/2

(ρ+ t2)n/2

Converting to pdf of r
To find the joint pdf of V and U requires the (double) Fourier inverse of

M(t1, t2), namely

f(v, u) =
1

(2π)2

Z ∞
−∞

Z ∞
−∞

χ(t1, t2) exp(−it1v − it2u)dt1dt2

A simple transformation yields the joint pdf of V and R ≡ U
V , namely

v · f(v, vr). Integrating V out results in the pdf of R (our final result), thus

f(r) =

Z ∞
0

v · f(v, vr)dv =
Z ∞
−∞

v · f(v, vr)dv

=
1

i

d

dθ

Z ∞
−∞

eivθf(v, vr)dv

¯̄̄̄
θ=0

=
d
dθ

i(2π)2

Z ∞
−∞

Z ∞
−∞

Z ∞
−∞

χ(t1, t2) exp(−it1v − it2vr + ivθ)dvdt1dt2

¯̄̄̄
θ=0

=
d
dθ

2πi

Z ∞
−∞

Z ∞
−∞

χ(t1, t2)δ(t1 + t2r − θ)dt1dt2

¯̄̄̄
θ=0

=
d
dθ

2πi

Z ∞
−∞

χ(θ − t2r, t2)dt2

¯̄̄̄
θ=0

We will now trade the dt2 integration for dz. The original definition of z now
reads:

z +
1

z
=
1 + ρ2 − 2iθ + 2irt2

ρ+ it2
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Solving for it2 yields

it2 = −ρ+ z(1− 2ρr + ρ2 − 2iθ)
1− 2rz + z2

Substituting into χ(θ − rt2, t2) and multiplying by

dt2
dz

=
(1− z2)(1− 2ρr + ρ2 − 2iθ)

i(1− 2rz + z2)2

yields
1− ρn

1− zn
· (1− z2)(1− 2rz + z2)n/2−2

i(1− 2ρr + ρ2 − 2iθ)n/2−1
This expression needs to be integrated over the corresponding path (in z,

which starts at r − i
√
1− r2 and end at r + i

√
1− r2), and differentiated with

respect to θ. We know that we can modify the path arbitrarily (as long as we
don’t cross any singularity, which are all on the unit circle), so why not take
the straight line connecting the two end points (this also makes z independent
of θ)! As a result of all this, we get

f(r) =
1

2πi

(n− 2)(1− ρn)

(1− 2ρr + ρ2)n/2

Z r+i
√
1−r2

r−i√1−r2
(1− z2)(1− 2rz + z2)n/2−2

1− zn
dz

When n is even, the last integral (divided by i) can be found analytically to
have the value of

1

n

nX
j=1

Im
nh

ωj(ω
2
j − 1)(1− 2rωj + ω2j )

n/2−2
i h
2 ln(r − cosϕj)− ln

³
1− r cosϕj +

p
1− r2 sinϕj

´io
where ϕj =

2πj
n and ωj = cosϕj + i sinϕj . Watch out, this computation is ill

conditioned.
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