
Estimating spectrum density

Estimating spectral intensity is done by
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For white noise, we have
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(unless β = 0 or π), and their covariance is

σ2 ·
PN
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sin(β n) cos(β n)

N·π ' 0
This implies that A2+B2 has the χ22 distribution, multiplied by

σ2

2π (exponential,

with the mean of σ
2

π ). Its standard deviation is thus as large as its expected value,
regardless of how large an N we use! (When β = 0 or π, we get χ21 multiplied
by σ2

π - the standard deviation is
√
2 times bigger than the expected value).

Furthermore, when you take the Î estimates at two different values of β (say β1
and β2), they will be practically uncorrelated (independent), since

2 sin(β1 n) sin(β2 n) = cos[(β1 + β2)n]− cos[(β1 − β2)n]

2 cos(β1 n) cos(β2 n) = cos[(β1 + β2)n] + cos[(β1 − β2)n]

2 sin(β1 n) cos(β2 n) = sin[(β1 + β2)n] + sin[(β1 − β2)n]

and all of these add up (to a good approximation) to zero. One can thus see
that estimating a spectrum (of even the simplest model) is going to be very
difficult.
Furthermore, one can easily show that when

Xn ≡
∞X
j=0

fjεn−j

(and all our models can be expressed in this form), then the spectral intensity
of the X sequence is

Ix(β) = f(eiβ)f(e−iβ)Iε(β)

where Iε(β) is the spectral intensity of the ε sequence, and

f(x) ≡
∞X
j=0

fjx
j
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The same relationship holds also for the corresponding Îx(β) and Îε(β) esti-
mators; this implies that we encounter the same problem when estimating any
spectrum - for each β, the standard deviation of the estimator will be as large as
the corresponding expected value (regardless of N), and these huge fluctuations
will be practically uncorrelated (for two distinct values of β).
Due to this, the actual empirical spectrum is a collection of literally hundreds

of ‘spikes’ which, at their peak, highly overshoot the correct value of ω(β), and
at their bottom are practically equal to zero. Clearly something needs to be
done to alleviate this problem.

Windowing

It appears (and is quite logical) that the main contribution to the ‘wild’
behavior of empirical spectra comes from (highly oscillating) terms with large
values of k in

ω̂(β) = 1 + 2
N−1X
k=1

ρ̂k cos(β k) (1)

At the same time, to estimate a spectrum expected to be reasonably ‘smooth’,
we should not need more than a handful (say M) of the small-k terms.
This leads to the idea of simply discarding the large-k terms of the previous

formula, with the objective of eliminating the random ‘spikes’ without flattening
the real peaks (of the actual spectrum). Clearly, these two criteria work against
each other, and we have to be rather careful to reach a good (never perfect)
compromise: we should start with a relatively large M and keep on decreasing
it - as soon as we see the ‘real’ peaks shrinking, we must stop (even though some
residual of the random ‘jerkiness’ will still be present). To reconcile these two
opposite trends (to diminish the real effect, and to introduce random spikes) as
much as possible, we have to truncate the summation of the previous formula
in a less abrupt manner - this is the task of the so called windowing. It works as
follows: instead of a simple truncation, we gradually decrease the contribution
of each term (by a factor λk), till we reach zero (at k = M). There are several
‘popular’ ways of doing this, namely (from best to worst):
Tukey:

λk =
1

2

µ
1 + cos

πk

M

¶
k ≤M

Parzen:
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Bartlett:
λk = 1− k

M
k ≤M

Smoothing
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There is also a somehow less successful (but, in a sense, more natural) idea
of simply ‘smoothing’ the spectrum, by first discretizing the β scale (dividing it
into exactly N

2 subintervals), evaluating (1) at each such β, and then taking as
the final estimate of ω(βj) - let us denote it ω̄(βj) - the simple average of 2c+1
consecutive values of ω̂(βm), centered on ω̂(βj), i.e.

ω̄(βj) =

Pj+c
m=j−c ω̂(βm)
2c+ 1

When close to β = 0 and β = π, we have to utilize the following symmetry:
ω(−β) = ω(β) and ω(π + β) = ω(π − β).
One can show that this way of smoothing the spectrum is equivalent to using

the following window

λk =
sin (2c+1)πkN

(2c+ 1) sin πk
N

k ≤ N

This is based on (see the next proof to understand why):
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where a ≡ exp(i2πkN ). Since

cX
m=−c

am = a−c(1+a+a2+a2c) = a−c
a2c+1 − 1
a− 1 =

ac+1/2 − a−c−1/2

a1/2 − a−1/2
=
sin πk(2c+1)

N

sin πk
N

Hanning is a combination of windowing and smoothing: we first do the
regular truncation of the sum in (1) toM terms (this is effectively taking λk = 1
for k ≤M), and then replacing each ω̂(βj) by the following weighted average:

ω̄(βj) =
1

4
ω̂(βj−1) +

1

2
ω̂(βj) +

1

4
ω̂(βj+1)

where the [0, π] interval must be now divided into M subintervals (with β dis-
cretized accordingly).
One can show that this (rather elaborate) procedure is equivalent to Tukey’s

windowing.
Proof:

1 + 2
MX
k=1

ρ̂k

·
1

2
cos(β k) +

cos[(β + π
M )k] + cos[(β − π

M )k]

4

¸
=

1 + 2
MX
k=1

ρ̂k cos(β k) ·
1 + cos( πM k)
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Hamming is the same as Hanning, except for the weighing scheme: 0.23,
0.54, 0.23 instead of 14 ,

1
2 and

1
4 (someone was clearly doing a lot of tinkering).
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