1. Let X_1 , X_2 , X_3 and X_4 have a multivariate Normal distribution with respective means of 3, -4, 2, 0 and 5, and the variance-covariance matrix of

	11	-4	3	-2	7
	-4	5	-2	1	-6
$\mathbb{V} =$	3	-2	9	0	10
	-2	1	0	1	-2
	$\begin{bmatrix} 11\\ -4\\ 3\\ -2\\ 7 \end{bmatrix}$	-6	10	-2	17

(verify that it is positive definite). Find a 5×5 upper-triangular matrix \mathbb{A} (with positive main-diagonal elements) such that $\mathbb{V} = \mathbb{A}^{T}\mathbb{A}$. Also: what is the conditional distribution of X_2 , X_4 given that $X_1 = 1.5$, $X_3 = -1.2$ and $X_5 = 7$.

- 2. Find the probability density function of n consecutive observations of a stationary time series based on the Yule model (with 3 parameters: α_1 , α_2 and σ^2). Assume that $n \ge 4$.
- 3. Using the first set of data provided on the web site, find the maximumlikelihood estimators for μ , σ and ρ of the following model:

$$X_i = \mu + \rho(X_{i-1} - \mu) + \varepsilon_i$$

where ε_i are IID from $\mathcal{N}(0, \sigma)$.

4. Using the second set of data and the following formula

$$r_k = \frac{\sum_{i=1}^{N-k} X_i X_{i+k}}{\sum_{i=1}^{N} X_i^2}$$

estimate and plot the values of the first 50 serial correlation coefficients $(\rho_1 \text{ to } \rho_{50})$. Also estimate and plot the spectral density (at $\beta = \frac{j \cdot \pi}{40}$ where $j = 0, 1, \dots, 40$). Smooth out the resulting graph by means of the following 'Tukey' window:

$$\lambda(k) = \frac{1 + \cos\frac{k}{M}}{2}$$

using M = 25.

5. Consider the following ARMA model:

$$X_i = -1.6X_{i-1} - 0.9X_{i-2} + \varepsilon_i + \varepsilon_{i-1} + \varepsilon_{i-2}$$

where ε_i are independent, Normally distributed with the mean equal to zero and $\sigma = 1.7$.

- (a) Compute and plot ρ_k for k = 1, 2, ...50.
- (b) Find (express as a rational function of $\cos \beta$ and $\cos 2\beta$) and plot the process' spectral density.

(c) Find

$$\Pr(X_{312} > 4.9 \mid X_{311} = -3.5 \cap X_{310} = 2.4 \cap X_{309} = -1.8)$$

6. Suppose we need to estimate the first few moments of

$$g(\bar{X})$$

We already know that

$$\mathbb{E}\left[g(\bar{X})\right] \simeq g(\mu) + g''(\mu)\frac{\sigma^2}{2N}$$
$$\operatorname{Var}\left[g(\bar{X})\right] \simeq g'(\mu)^2 \frac{\sigma^2}{N}$$

where μ and σ are the mean and standard deviation of the X distribution, and N is the sample size.

Apply these formulas to find the corresponding approximation to the expected value and variance of $\frac{1}{X}$, when sampling from an exponential distribution with the mean equal to β . Compare with the exact results (which, for this simple situation, can be found analytically).

Optional: Find a similar approximation for the third central moment of $g(\bar{X})$.