1. Let X_1 , X_2 ,... X_5 have a multivarite Normal distribution with respective means of 3.5, -4.5, 0.5, 2.0, and 1.6, and the variance-covariance matrix of

	32	-4	10	-8	-11]
	-4	37	-1	1	-12
$\mathbb{V} =$	10	$^{-1}$	7	-8	-2
	-8	1	-8	15	10
	-11	-12	-2	10	$ \begin{array}{c} -11 \\ -12 \\ -2 \\ 10 \\ 32 \end{array} $

(verify that it is positive definite).

- (a) What is the conditional distribution of X_1 , X_2 , given that $X_3 = -2.5$, $X_4 = 1.3$ and $X_5 = 4.0$.
- (b) Find a 5×5 matrix \mathbb{B} such that $\mathbb{BB}^T = \mathbb{V}$. Verify your answer.
- 2. Compute approximate $(\frac{1}{N} \text{ accurate})$ values of the standard errors of \hat{V} , r_1, r_2 and r_3 , using the Yule model with $\alpha_1 = 1.4, \alpha_2 = -0.9, \sigma = 1$ and N = 1000.
- 3. For the circular Markov model with $\rho = -0.83$, $\sigma = 3.7$ and $X_{60} \equiv X_0$, compute and plot all 60 serial correlation coefficients. Also, compute $\Pr(X_1 > 0.87 \mid X_3 = -1.02 \cap X_{59} = 1.14)$.
- 4. Smooth out the empirical spectrum of the given set of data by dividing the 0 to π interval into 30 subintervals and using the following weighted averaging (spectral window):

$$\tilde{\omega}(\boldsymbol{\beta}_i) = \frac{\hat{\omega}(\boldsymbol{\beta}_{i-2}) + 2\hat{\omega}(\boldsymbol{\beta}_{i-1}) + 3\hat{\omega}(\boldsymbol{\beta}_i) + 2\hat{\omega}(\boldsymbol{\beta}_{i+1}) + \hat{\omega}(\boldsymbol{\beta}_{i+2})}{9}$$

(plot and print both the raw and smoothed out spectrum).

Find the lag window which achieves that same smoothing, plot and print the corresponding λ values, and verify that the two results are identical (print the resulting set of the 31 $\tilde{\omega}(\beta_i)$ values).

5. Consider the following spectral density of an ARMA model:

$$\omega(\beta) = c \cdot \frac{41 - 68\cos(\beta) + 38\cos(2\beta) - 13\cos(3\beta) + 2\cos(4\beta)}{367 + 276\cos(\beta) + 72\cos(2\beta) + 60\cos(3\beta) + 25\cos(4\beta)}$$

- (a) Find the value of c, and of the first 25 serial correlation coefficients.
- (b) What is the actual ARMA model (find *all* possible solutions).