1. Find ML estimates of the six parameters $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \mu \text{ and } \sigma)$ of the AR(4) model, based on the posted (equilibrated) data.

Taking the estimates to be a good representation of the 'true' values of these parameters, find (and plot) the corresponding 'theoretical' spectral density (using $\cos \beta$, $\cos 2\beta$, $\cos 3\beta$ and $\cos 4\beta$) and the value of the common variance V.

- 2. Plot the 'continuous' *empirical* spectral density of the data from Question 1, smoothed out
 - (a) by using the following kernel

$$g(u) = \begin{cases} 25u + 5 & -\frac{1}{5} \le u \le 0\\ 5 - 25u & 0 \le u \le \frac{1}{5}\\ 0 & \text{otherwise} \end{cases}$$

(b) and also by using the following lag window

$$\lambda_k = \begin{cases} 1 & k \le 20\\ \frac{1}{2} - 3 \cdot \frac{k - 30}{40} + \frac{(k - 30)^3}{4000} & 20 \le k \le 40\\ 0 & \text{otherwise} \end{cases}$$

- 3. Using the provided equilibrated data generated from an ARMA model (with $\mu = 0$), find the 'primitive' estimates of V, ρ_1 , ρ_2 and ρ_3 . Based on these, estimate the partial correlation coefficient between X_n and X_{n+3} , given the values of X_{n+1} and X_{n+2} .
- 4. Assuming that Z_1 , Z_2 , Z_3 , Z_4 and Z_5 is a random independent sample of size 5 from $\mathcal{N}(0,1)$, and that

$\begin{bmatrix} X_1 \end{bmatrix}$	0	3	2	-1	4	$\begin{bmatrix} Z_1 \end{bmatrix}$		3
X_2	-3	-1	0	1	3	Z_2		-2
$X_3 =$	-2	1	-4	4	-2	Z_3	+	4
X_4	-3	5	-1	2	0	Z_4		-1
$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	2	3	0	0	-5	Z_5		2

find the variance-covariance matrix of the five X's. Also compute

- (a) $\Pr(X_3 > 4.4 \mid X_1 = 1.8 \cap X_2 = -1.8 \cap X_5 = 2.3)$, (b) $\Pr(X_3 - X_4 > 2 \mid X_1 = 1.8 \cap X_5 = 2.3)$, (c) $\mathbb{E}(X_3^2 \cdot X_4^2)$.
- 5. Consider the following (theoretical) spectral-density function:

$$w(\beta) = c \cdot \frac{1134 - 1296\cos(\beta) + 486\cos(2\beta)}{241 - 312\cos(\beta) + 72\cos(2\beta)}$$

Find

- (a) the corresponding ARMA models (all distinct ones),
- (b) for each, the value of $\frac{\sigma^2}{V}$ where V is the common variance (after equilibration),
- (c) a general (and exact) formula for $\rho_k.$ Partial mark given for a list of $\rho_1,\,\rho_2,...\rho_{10}.$