
Univariate Normal distribution

In general, it has two parameters, µ and σ (mean and standard deviation).
A special case is standardized Normal distribution, with the mean of 0 and
standard deviation equal to 1. Any general X can be converted to standardized
Z by

Z =
X − µ
σ

and reverse
X = σZ + µ

It is usually a lot easier to deal with Z, and then convert the results to X.
We should recall that in general, if X ∈ N (µ, σ), then

aX + b ∈ N (aµ+ b, |a|σ) (1)

where a and b are constants.
The probability density function (PDF from now on) of Z and X is

fZ(z) =
exp(− z2

2 )√
2π

fX(x) =
exp(− (x−µ)2

2σ2 )√
2πσ

respectively.
Similarly, the moment generating function (MGF) is

Mz(t) = exp(
t2

2
)

Mx(t) = eµt ·Mz(σt) = exp(
σ2t2

2
+ µt)

Bivariate Normal distribution

Again, we consider two versions, the general (X and Y ) and standardized
(Z1 and Z2). The general distribution is defined by 5 parameters (the individual
means and variances, plus the correlation coefficient ρ), the standardized version
has only one, namely ρ.

The two joint (bivariate) PDF’s are

fzz(z1, z2) =
exp(− z2

1
+z2

2
−2ρz1z2

2(1−ρ2) )

2π
√
1− ρ2

fxy(x, y) =

exp

(
− (

x−µ1
σ1

)2+(
y−µ2
σ2

)2−2ρ(x−µ1
σ1

)(
y−µ2
σ2

)

2(1−ρ2)

)

2πσ1σ2
√
1− ρ2

for the standardized and general case, respectively.
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Similarly, the joint MGFs are

Mzz(t1, t2) = exp(
t21 + t

2
2 + 2ρt1t2
2

)

Mxy(t1, t2) = e
µ
1
t1+µ2t2 ·Mzz(σ1t1, σ2t2) =

exp

(
σ21t

2
1 + σ

2
2t
2
2 + 2ρσ1σ2t1t2
2

+ µ1t1 + µ2t2

)

We should remember that a joint MGF enables us to find joint simple mo-
ments of the distribution by

E (XnYm) =
∂(n+m)Mxy(t1, t2)

∂tn1∂t
m
2

∣∣∣∣
t1=t2=0

Also, we can easily find the MGF of a marginal distribution of X by setting
t2 = 0. This tells us immediately that both Z1 and Z2 are standardized Normal.

But now, there is one extra issue to investigate:
Conditional distribution of Z1 | Z2 = z2 (using boldface implies that z2

is no longer variable, but is assumed to have one specific ’observed’ value).
To find the corresponding (univariate!) PDF, we have to do this:

fzz(z1, z2)

fz(z2)
=
exp(− z2

1
+z2

2
−2ρz1z2

2(1−ρ2) )

2π
√
1− ρ2

÷ exp(−
z
2

2

2 )√
2π

=
exp
(
− (z1−ρz2)2

2(1−ρ2)

)

√
2π
√
1− ρ2

by simple algebra. The result can be identified as N (ρz2,
√
1− ρ2), i.e. Normal,

with mean of ρz2 and standard deviation equal to
√
1− ρ2 (smaller than what

it was marginally, i.e. before we observed Z2). Note that many textbooks use
this notation, but put variance in place of standard deviation.

How do we utilize this result to find the conditional distribution of X given
that Y has been observed to have a value of y. Well, we could use the same
procedure, but the algebra would get a lot more messier, or we can do this:

We already know that the conditional distribution of X−µ1σ1
| Y−µ2σ2

= y−µ
2

σ2

is N (ρy−µ2σ2
,
√
1− ρ2). So we have the conditional distribution of

X−µ
1

σ1
| Y = y

(which is clearly the same thing). Now, using (1), which holds conditionally as
well, we find that the conditional distribution of X | Y = y is

N
(
µ1 + σ1ρ

y− µ2
σ2

, σ1
√
1− ρ2
)

Multivariate Normal Distribution

Consider N independent, standardized, Normally distributed random vari-
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ables. Their joint PDF is

f(z1, z2, ..., zN) = (2π)−N/2 · exp




−

N∑

i=1
z2i

2






≡ (2π)−N/2 · exp
(
−z

T z

2

)

Corresponding MGF

exp






N∑

i=1
t2i

2




 ≡ exp

(
tT t

2

)

The following linear transformation

X = BZ+µ

where B is an arbitrary (regular) N by N matrix, defines a new set of N random
variables having a general Normal distribution.

The corresponding PDF is

∣∣det(B−1)
∣∣

√
(2π)N

exp

(

−(x−µ)
T (B−1)TB−1(x−µ)

2

)

1
√
(2π)N det(V)

exp

(

−(x−µ)
T
V−1(x−µ)
2

)

since Z = B−1(X−µ), which further implies that

(X−µ)T (B−1)TB−1(X−µ)
= (X−µ)T (BBT )−1(X−µ)
= (X−µ)TV−1(X−µ)

which must thus have the χ2N distribution.
The corresponding MGF is

E
{
exp
[
tT (BZ+µ)

]}

= exp
(
tTµ
)
· exp
(
tTBBT t

2

)

= exp
(
tTµ
)
· exp
(
tTV t

2

)

where V ≡ BBT is the corresponding variance-covariance matrix (must be sym-
metric and positive definite). This shows each marginal distribution remains
Normal, without a change in the corresponding µ and V elements.
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Note that there are many different B’s resulting in the same V.
To generate a set of normally distributed random variables having a given

variance-covariance matrix V requires us to solve for the corresponding B (Maple
provides us with Z only, when typing: stats[random,normald](20) ). There
is infinitely many such B matrices, one of them (easy to construct) is lower
triangular.

Partial correlation coefficient
The variance-covariance matrix can be converted into the correlation matrix:

Cij ≡
Vij√
Vii · Vjj

The main diagonal elements of C are all equal to 1 (the correlation of Xi with
itself).

Suppose we have three normally distributed random variables with a given
variance-covariance matrix. The conditional distribution of X2 and X3 given
that X1 = x1 has a correlation coefficient independent of the value of x1. It is
called the partial correlation coefficient, and denoted ρ23 |1. Let us find its value
in terms of the ordinary correlation coefficients..

Any correlation coefficient is independent of scaling. We can thus choose the
three X’s to be standardized (but not independent), having the following 3-D
PDF:

1
√
(2π)3 det(C)

· exp
(
−z

TC−1z

2

)

where

C =




1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1





Since the marginal PDF of z1 is

1√
2π
· exp
(
−z

2
1

2

)

the conditional PDF we need is

1
√
(2π)2 det(C)

· exp
(
−z

TC−1z− z21
2

)

The information about the five parameters of the corresponding bi-variate dis-
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tribution is in

zTC−1z− z21 =
(
z2 − ρ12z1√
1− ρ212

)2
+

(
z3 − ρ13z1√
1− ρ213

)2

−2 ρ23 − ρ12ρ13√
1− ρ212

√
1− ρ213

(
z2 − ρ12z1√
1− ρ212

)(
z3 − ρ13z1√
1− ρ213

)

1−
(

ρ23 − ρ12ρ13√
1− ρ212

√
1− ρ213

)2

which, in terms of the two conditional means and standard deviations agrees
with what we know from MATH 2F81. The extra parameter is our partial
correlation coefficient

ρ23 |1 =
ρ23 − ρ12 · ρ13√
1− ρ212

√
1− ρ213

or

ρij |k =
ρij − ρik · ρjk
√
1− ρ2ik

√
1− ρ2jk

in general.
To get the conditional mean, standard deviation and correlation coefficient

given more than one X has been observed, one can ’iterate’ in the following
manner:

µi |K� = µi |K + σi |Kρi� |K
x� − µ� |K
σ� |K

σi |K� = σi |K
√
1− ρ2i� |K

ρij|K� =
ρij|K − ρi�|K · ρj�|K√
1− ρ2i�|K

√
1− ρ2j�|K

etc., where K now represents any number of indices (corresponding to the al-
ready observed X’s).

A more direct way to find these is presented in the following section.
General conditional distribution:
When the N variables are partitioned into two subsets, say X(1) and X(2),

with means µ(1) and µ(2), and the variance-covariance matrix

[
V11 V12

V21 V22

]

whose inverse is

A =

[
(V11 −V12V−122 V21)−1 −(V11 −V12V−122 V21)−1V12V−122

−(V22 −V21V−111 V12)−1V21V−111 (V22 −V21V−111 V12)−1
]
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The conditional PDF of X(1) given X(2) = x(2) is obviously

1
√
(2π)N det(V)

exp

(

−(x−µ)
T
V
−1(x−µ)
2

)

÷

1
√
(2π)N2 det(V22)

exp

(

−
(x(2)−µ(2))TV−122 (x(2)−µ(2))

2

)

i.e. still Normal. To get the resulting (conditional) variance-covariance matrix,
all we need to do is to invert the corresponding block of A, getting

V(1,2) ≡ V11 −V12V−122 V21
Similarly, the conditional mean (say µ(1|2)) is found based on

−xT
(1)V

−1
(1|2)µ(1|2) = −xT

(1)(V11 −V12V−122 V21)−1µ(1) −

xT
(1)(V11 −V12V−122 V21)−1V12V−122 (x(2) −µ(2))

It equals
µ(1|2) = µ(1) +V12V

−1
22 (x(2) −µ(2))

Proof:

[x(1)−µ(1)−V12V−122 (x(2)−µ(2))]T(V11−V12V−122 V21)−1[x(1)−µ(1)−V12V−122 (x(2)−µ(2))]

= (x(1) −µ(1))T(V11 −V12V−122 V21)−1(x(1) −µ(1))
−(x(2) −µ(2))TV−122 V21(V11 −V12V−122 V21)−1(x(1) −µ(1))
−(x(1) −µ(1))T(V11 −V12V−122 V21)−1V12V−122 (x(2) −µ(2))
+(x(2) −µ(2))TV−122 V21(V11 −V12V−122 V21)−1V12V−122 (x(2) −µ(2))

Since

V21(V11 −V12V−122 V21)−1 ≡ V22(V22 −V21V−111 V12)−1V21V−111
the last matrix equals

(V22 −V21V−111 V12)−1V21V−111 V12V−122
= (V22 −V21V−111 V12)−1(V21V−111 V12 −V22 +V22)V−122
= (V22 −V21V−111 V12)−1 −V−122

in full agreement with the conditional PDF quoted above.
Finally, to show that det(V)÷ det(V22) = det(V11 − V12V−122 V21), take the

determinant of each side of
[
I −V12V−122
O V

−1
22

] [
V11 V12

V21 V22

]
=

[
V11 −V12V−122 V21 O

V
−1
22 V21 I

]
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Estimating µ, ρ and ρ

The standard method of finding good estimators of distribution parameters
is called Maximum Likelihood (ML) technique. We will demonstrate it on the
general Normal bivariate case.

First, take the natural logarithm of the PDF of a random independent sample
of n pairs of X and Y observations (product of individual PDFs), namely

ln
n∏

i=1

exp

(
− (

xi−µ1
σ1

)2+(
yi−µ2
σ2

)2−2ρ(xi−µ1
σ1

)(
yi−µ2
σ2

)

2(1−ρ2)

)

2πσ1σ2
√
1− ρ2

= −
∑n
i=1

[
(xi−µ1σ1

)2 + (yi−µ2σ2
)2 − 2ρ(xi−µ1σ1

)(yi−µ2σ2
)
]

2(1− ρ2)

−n ln(2π)− n lnσ1 − n lnσ2 −
n

2
ln(1− ρ2)

Then, replace the xi and yi variables by the actual sample values (switch to
boldface), and maximize this expression with respect to the µ1, µ2, σ1, σ2 and
ρ parameters (by setting the corresponding derivatives equal to zero):

n∑

i=1

(
xi − µ1
σ1

)− ρ
n∑

i=1

(
yi − µ2
σ2

) = 0

n∑

i=1

(
yi − µ2
σ2

)− ρ
n∑

i=1

(
xi − µ1
σ1

) = 0

1

σ31

n∑

i=1

(xi − µ1)2 −
ρ

σ21

n∑

i=1

(xi − µ1)(
yi − µ2
σ2

) =
n

σ1
(1− ρ2)

1

σ32

n∑

i=1

(yi − µ2)2 −
ρ

σ22

n∑

i=1

(yi − µ2)(
xi − µ1
σ1

) =
n

σ2
(1− ρ2)

1

1− ρ2
n∑

i=1

(
xi − µ1
σ1

)(
yi − µ2
σ2

)− ρ

(1− ρ2)2 ·

·
n∑

i=1

[
(
xi − µ1
σ1

)2 + (
yi − µ2
σ2

)2 − 2ρ(xi − µ1
σ1

)(
yi − µ2
σ2

)

]

= − nρ

(1− ρ2)
The first two equations are solved by making both

∑n
i=1(xi − µ1) and∑n

i=1(yi − µ2) equal to zero, which means

µ̂1 =

∑n
i=1 xi

n
≡ x
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µ̂2 =

∑n
i=1 yi

n
≡ y

(the usual sample means).
The next three equations can be re-written as

n∑

i=1

(
xi − µ1
σ1

)2 − ρ
n∑

i=1

(
xi − µ1
σ1

)(
yi − µ2
σ2

) = n(1− ρ2)

n∑

i=1

(
yi − µ2
σ2

)2 − ρ
n∑

i=1

(
xi − µ1
σ1

)(
yi − µ2
σ2

) = n(1− ρ2)

(1− ρ2)
n∑

i=1

(
xi − µ1
σ1

)(
yi − µ2
σ2

)−

−ρ
n∑

i=1

[
(
xi − µ1
σ1

)2 + (
yi − µ2
σ2

)2 − 2ρ(xi − µ1
σ1

)(
yi − µ2
σ2

)

]

= −nρ(1− ρ2)
Using the first two equations, the second term of the last equation can be sim-
plified to −2ρn(1− ρ2). The last equation thus reads

(1− ρ2)
n∑

i=1

(
xi − µ1
σ1

)(
yi − µ2
σ2

) = nρ(1− ρ2)

which implies

ρ =

∑n
i=1(xi − µ1)(yi − µ2)

n σ1σ2

Substituting this for the second term of the first two equations makes the
second term read −nρ2. Cancelling with the corresponding term on the right
hand side yields

n∑

i=1

(
xi − µ1
σ1

)2 = n

n∑

i=1

(
yi − µ2
σ2

)2 = n

and the following final estimators:

σ̂1 =

√∑n
i=1(xi − x)2

n

σ̂2 =

√∑n
i=1(yi − y)2

n

and

ρ̂ =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2 ·
∑n
i=1(yi − y)2
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(sample correlation coefficient), more commonly denoted r.

We know that X, Y ,
∑

n
i=1

(Xi−X)2
σ2
1

and
∑

n
i=1

(Yi−Y )2
σ2
2

have simple distribu-

tions, the distribution of r is a lot more complicated; this is its PDF:

(n− 2) · Γ(n− 1) · (1− ρ2)n−12√
2π · Γ(n− 1

2)
· (1− r

2)
n
2
−2

(1− ρ r)n− 3

2

· F (12 , 12 ;n− 1
2 ;

1+ρ r
2 )

where F is the hypergeometric function defined by

F (a, b; c;x) = 1 +
a · b
c · 1! x+

a(a+ 1) · b(b+ 1)
c(c+ 1) · 2! x2

+
a(a+ 1)(a+ 2) · b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2) · 3! x3 + ...

This result is due to Hotelling (1953).
The corresponding expected value of r is

ρ Γ(n2 )
2

Γ(n−12 )Γ(
n+1
2 )

F (12 ,
1
2 ;

n+1
2 ; ρ

2)

so the estimator is clearly biased. Expanded in powers of 1
n , this becomes

ρ− ρ(1− ρ
2)

2n
− 3ρ(1− ρ

2)(1 + 3ρ2)

8n2
...

One finds that the distribution of arctanh(r) converges to Normal distribu-
tion a lot faster (it has a smaller bias, and a lot smaller skewness).

To derive this PDF, we first need some formulas concerning

n dimensional sphere

of radius r is defined as the following set

x21 + x
2
2 + ...+ x

2
n ≤ r2

Its volume Vn(r) = r
nVn(1) and surface area Sn(r) are clearly related by

Sn(r) =
dVn(r)

dr
= nrn−1Vn(1) = r

n−1Sn(1)

It is easier to find Sn from

πn/2 =

∫
· · ·
∫
exp(−x21 − x22 − ...− x2n)dx1dx2...dxn =

Sn(1)

∫ ∞

0

rn−1 exp(−r2)dr =

Sn(1)

2

∫ ∞

0

yn/2−1 exp(−y)dy =
Sn(1)

2
Γ
(n
2

)
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which implies that

Sn(1) =
2πn/2

Γ
(
n
2

)

Sn(r) =
2πn/2rn−1

Γ
(
n
2

)

and

Vn(r) =
2πn/2rn

nΓ
(
n
2

)

Sample from standardized bi-variate Normal distribution

has a PDF given by

(2π)−n(1− ρ2)−n/2 exp
(
−
∑
(x2i + y

2
i − 2ρxiyi)

2(1− ρ2)

)
dx1...dyn =

(2π)−n(1− ρ2)−n/2 ·

exp

(
−n(s

2
1 + x̄

2 + s22 + ȳ
2 − 2ρrs1s2 − 2ρx̄ȳ)

2(1− ρ2)

)
dx1...dyn

where

x̄ =

∑
xi

n
ȳ =

∑
yi

n

s21 =

∑
(xi − x̄)2
n

s22 =

∑
(yi − ȳ)2
n

r =

∑
(xi − x̄)(yi − ȳ)

ns1s2

All we have to do now is to figure out the volume of the 2n dimensional region
filled by taking each of the five quantities s1, s2, x̄, ȳ and r, and increasing them
by ds1, ds2, dx̄, dȳ and dr respectively.

We know that ∑
xi√
n
=
√
nx̄

is a plane in the ’first’ n dimensions (the x-space), going through (x̄, x̄, ...x̄)

and having (1,1,...1)√
n

as normal. Similarly

∑
(xi − x̄)2 = ns21

is an n dimenstional sphere centered on (x̄, x̄, ...x̄), with the radius of s1
√
n.

The plane cuts the sphere in ’the middle’, thus creating (the corresponding cross
section) an n− 1 dimensional sphere, whose surface is

2π(n−1)/2sn−21 n(n−2)/2

Γ
(
n−1
2

)
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This needs to be further multiplied (since the
√
nds1 and

√
ndx̄ directions are

perpendicular) by n dx̄ ds1.
Similar argument can be made in the y space, except now we need to keep

the (y1− ȳ, y2− ȳ, ...yn− ȳ) vector at a fixed angle to (x1− x̄, x2− x̄, ...xn− x̄),
an angle whose cos is r. This reduces the n− 1 dimensional shperical surface of
radius s2

√
n to an n− 2 dimensional spherical surface of radius s2

√
n(1− r2).

This then contributes

2π(n−2)/2sn−31 n(n−3)/2(1− r2)(n−3)/2
Γ
(
n−2
2

) n dȳ ds2
s2
√
n√

1− r2
dr

So now we have

nn(1− r2)(n−4)/2sn−21 sn−22

2n−2π3/2(1− ρ2)n/2Γ
(
n−1
2

)
Γ
(
n−2
2

)

· exp
(
−n(s

2
1 + x̄

2 + s22 + ȳ
2 − 2ρrs1s2 − 2ρx̄ȳ)

2(1− ρ2)

)
dx̄dȳds1ds2dr

(R. A. Fisher, 1915).
The dx̄dȳ integration (separable, from −∞ to ∞ each) can be carried out

easily, yielding

nn−1(1− r2)(n−4)/2sn−21 sn−21

π(1− ρ2)(n−1)/2(n− 3)! ·

exp

(
−n(s

2
1 + s

2
2 − 2ρrs1s2)

2(1− ρ2)

)
ds1ds2dr

(we have also replaced 2n−3Γ
(
n−1
2

)
Γ
(
n−2
2

)
by (n− 3)!√π).

To integrate over s1 and s2, we realize that the s1 > s2 and s1 < s2 regions
must contribute the same amount (the function is s1 ↔ s2 symmetric), so we
multiply the integrand by 2 and integrate over the latter.

Introducing the following one-to-one transformation (ξ goes from 0 to ∞, η
from 1 to infinity):

ξ = s1s2

η =
1

2

(
s1

s2
+
s2

s1

)
=
s21 + s

2
2

2s1s2

whose Jacobian is

det

[
s2 s1

1
2

(
1
s2
− s2

s2
1

)
1
2

(
1
s1
− s1

s2
2

)
]

=

(
s2

s1
− s1
s2

)
= 2
√
η2 − 1

results in

nn−1(1− r2)(n−4)/2ξn−2
π(1− ρ2)(n−1)/2(n− 3)! exp

(
−n(η − ρr)ξ

1− ρ2
)

dξdη
√
η2 − 1

dr
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which can be easily integrated over ξ, getting

(n− 2)(1− r2)(n−4)/2
π(1− ρ2)(n−1)/2 ·

(
1− ρ2
η − ρr

)n−1
dη
√
η2 − 1

dr

And the last substitution is

η =
1− ρrz
1− z

(z going from 0 to 1) replaces η − ρr by

1− ρr
1− z

dη by
1− ρr
(1− z)2 dz

and
√
η2 − 1 by

√
2z(1− ρr) ·

√
1− 1+ρr

2 z

1− z
getting

(n− 2)(1− r2)(n−4)/2z−1/2
(
1− 1+ρr

2 z
)−1/2

√
2π

·(1− ρ
2)(n−1)/2(1− z)n−2
(1− ρr)n−3/2 dz dr

Maple tells us that

∫ 1

0

zk(1− z)m(1− az)�dz =

Γ(k + 1)Γ(m+ 1)

Γ(k +m+ 2)
F (−%, k + 1;m+ k + 2; a)

which in our case means

Γ(12)Γ(n− 1)
Γ(n− 1

2)
F ( 12 ,

1
2 ;n− 1

2 ;
1+ρr
2 )

The final answer is thus

(n− 2)(n− 2)!(1− ρ2)(n−1)/2√
2πΓ(n− 1

2)
·

(1− r2)(n/2−2)
(1− ρr)n−3/2 F (

1
2 ,

1
2 ;n− 1

2 ;
1+ρr
2 )dr
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