n dimensional sphere
of radiusr is defined as the following set

x%—l—x%—i—...—i—xi <r?
Its volumeV,,(r) = "V, (1) and surface are$i,(r) are clearly related by
AV, (r)

Sp(r) = = m‘”flvn(l) = r”flS,,L(l)
Itis easier to findS,, from
% = / -/exp(—x% — 23 — ... — 22)dxdxs...dx, =

Sn(l)/ r"Lexp(—rt)dr =
0

SRTO)/OOOy””‘lexp(y)dy = Sn(l)P@)

which implies that

n/2
Su() = 22
jol
Sy (r) = %7:
I (%)
and 2m
Va(r) = 221
e

Sample from standardized bi-variate Normal distribution
has a PDF given by

2, .2
Cngy 2\—n/2 (@ + i = 2pmiy) _
2m)™"™(1 — p*) exp ( 50— ) dxy...dy,

(2m) (1 - )2

exp _n(s% + 22 + 83+ §* — 2prs152 — 2pTY) dzy..dyn
2(1-p?)
where
7 = sz g = Zyz
n n
s 2l@i—z)? 5 Yyi—y)?
s1 = So =
n n
.- 2@ =)y~ g)
ns182

All we have to do now is to figure out the volume of the dimensional region filled by
taking each of the five quantities, s2, z, ¥ andr, and increasing them bys:, dsa, dz, dy
anddr respectively.



We know that

DT — /nF

N
is a plane in the ‘firstn dimensions (the:-space), going througtx, z, ...z) and having
ﬁL\/ﬁll as normal. Similarly

Z(xz —z)? = ns?
is ann dimenstional sphere centered @h z, ...z), with the radius ofs; /n. The plane
cuts the sphere in 'the middle’, thus creating (the corradpw cross section) am — 1
dimensional sphere, whose surface is
om(n=1)/2gn =2y (n=2)/2

ey

This needs to be further multiplied (since th@ds; and\/ndz directions are perpendicular)
by n dz ds;.

Similar argument can be made in thespace, except now we need to keep the
(y1 — ¥,%2— U, .-yn — §) vector at a fixed angle tor; — z, 20— 7, ...xt,, — &), @an angle
whosecos is r. This reduces the — 1 dimensional shperical surface of radits,/n to an
n — 2 dimensional spherical surface of raditys,/n(1 — r2). This then contributes

27T(7172)/28111737”L(7173_):2(1 _ 7,.2)(7173)/2 . dy ds, SQ\/E
L (%3%) 1 —r2

dr

So now we have
n”(l _ T2)(n—4)/28?—2sg—2
2117271-3/2(1 _ pQ)n/QF (anl) T (nTﬂ)
exp (n(S% 7 5+ 57— 27153 — 2075)
21— ?)

> dzdyds,dssdr

(R. A. Fisher, 1915).
Thedzdy integration (separable, fromoo to oo each) can be carried out easily, yielding

nnfl(l _ 7"2)(1174)/23711723?72
(1 — p2)(n=1/2(p — 3)!
n(s? + 83 — 2prs1s2)
exp ( ) dsidsadr
(we have also replacet? —3T" (2:2) T (252) by (n — 3)!/7).
To integrate ovek; andss, we realize that the; > s, ands; < s regions must
contribute the same amount (the functiorsis< sy symmetric), so we multiply the

integrand by2 and integrate over the latter.
Introducing the following one-to-one transformatigngoes from0 to oo, n from 1 to




infinity):

whose Jacobian is

results in

n—1(1 _ .2\(n—4)/2¢n—2 _

n"(1—r%) 3 exp _nln—pr)€\ _dédn
(1 — p2)(n=1/2(n — 3)! 1—p?

which can be easily integrated ovgrgetting

n— n—1
(n—2)(1 —r*)"=02 (1 p? .
m(1 = p?) =)/ n—pr ViE 1
And the last substitution is
1 —prz
o 1—z
(z going fromO to 1) replaces; — pr by
1—pr
1—2
dn by
1—pr
i Z)de
andy/n? — 1 by
V2z(1—pr)-4/1— 1—+2ﬂz
1—2
getting
—1/2

(n—2)(1 —r?)" =022 12 (1 - B

V2r
(1 o p2)(n71)/2(1 o Z)n72
' (1— pr)n=3/2

dz dr

Maple tells us that

1
/ 2P(1 = 2)™(1 — az)'dz =
0

T(k+ 1) (m + 1)
I'(k+m+2)

F(—lk+1;m+k+2;a)



which in our case means

I(3)(n-1)
L(n—3)

The final answer is thus

(n—2)(n —2)I(1 = )"V
V2rl(n— 1)
_.2\(n/2-2)

LF(%,
(1 _ pT)'L_3/2

. 1. 14pr
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