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Sample from standardized bi-variate Normal distribution
has a PDF given by
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All we have to do now is to figure out the volume of the2n dimensional region filled by
taking each of the five quantitiess1, s2, x̄, ȳ andr, and increasing them byds1, ds2, dx̄, dȳ
anddr respectively.
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We know that �
xi√
n
=
√
nx̄

is a plane in the ’first’n dimensions (thex-space), going through(x̄, x̄, ...x̄) and having
(1,1,...1)√

n
as normal. Similarly

	
(xi − x̄)2 = ns21

is ann dimenstional sphere centered on(x̄, x̄, ...x̄), with the radius ofs1
√
n. The plane

cuts the sphere in ’the middle’, thus creating (the corresponding cross section) ann − 1
dimensional sphere, whose surface is
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This needs to be further multiplied (since the
√
nds1 and
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ndx̄ directions are perpendicular)

by n dx̄ ds1.
Similar argument can be made in they space, except now we need to keep the

(y1 − ȳ, y2− ȳ, ...yn − ȳ) vector at a fixed angle to(x1 − x̄, x2− x̄, ...xn − x̄), an angle
whosecos is r. This reduces then − 1 dimensional shperical surface of radiuss2

√
n to an

n− 2 dimensional spherical surface of radiuss2


n(1− r2). This then contributes
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So now we have
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(R. A. Fisher, 1915).
Thedx̄dȳ integration (separable, from−∞ to∞ each) can be carried out easily, yielding
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To integrate overs1 ands2, we realize that thes1 > s2 ands1 < s2 regions must
contribute the same amount (the function iss1 ↔ s2 symmetric), so we multiply the
integrand by2 and integrate over the latter.

Introducing the following one-to-one transformation (ξ goes from0 to∞, η from 1 to
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And the last substitution is
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which in our case means
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