
SPECTRAL ANALYSIS

Any stationary Time-Series sequence will normally exhibit random cycles of various
frequencies. Depending on the model, some frequencies are more likely to occur that others.
The likelihood of generating a random cycle of a given frequency can be expressed in terms
of the so called SPECTRAL DENSITY, which is computed by matching the Xi sequence to
an exact sin/cos sequence of a specific (angular) frequency β, i.e. Yn ≡ sin(β n+ θ), and
adjusting the phase shift θ to yield a maximum value of the following quantity:

ω(β) ≡

·
NP
n=1

Xn · sin(β n+ θ)

¸2
NP
n=1

X2
n

(reminiscent of computing N
2 ρ

2 between the two sequences). Note that it is sufficient to take
β from the [0, π] interval, since ω(β) = ω(β + 2π) = ω(−β).
To maximize "

NX
n=1

Xn · sin(β n+ θ)

#2
=

"
cos θ

NX
n=1

Xn · sin(β n) + sin θ
NX
n=1

Xn · cos(β n)
#2
≡

(cos θ · S + sin θ · C)2
we differentiate withrespect to θ, getting

2(cos θ · S + sin θ · C)(− sin θ · S + cos θ · C) =
2 sin θ cos θ(C2 − S2) + 2SC(cos2 θ − sin2 θ)

Setting this expression to zero yields four solutions (first two maximize, last two minimize):

sin θ =
C√

S2 + C2
,
−C√

S2 + C2
,

S√
S2 + C2

,
−S√

S2 + C2

cos θ =
S√

S2 + C2
,

−S√
S2 + C2

,
−C√

S2 + C2
,

C√
S2 + C2

The maximum value of the original expression is thusµ
S√

S2 + C2
· S + C√

S2 + C2
· C
¶2
=

S2 + C2 =

"
NX
=1

Xn · sin(β n)
#2
+

"
NX
i=1

Xn · cos(β n)
#2
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The spectral density can thus be redefined as

ω(β) ≡

·
NP
n=1

Xn · sin(β n)
¸2
+

·
NP
n=1

Xn · cos(β n)
¸2

NP
n=1

X2
n

which is more convenient computationally (no messing up with θ), but loses the transparency
of its original meaning.
So far, we have made only an ’empirical’ definition of ω(β), providing, effectively, only

its estimator. The ’theoretical’ definition of spectral density uses the expected value of the
previous expression in the N → ∞ limit. Realizig that sin(β n) ≡ exp(i n β)− exp(−i n β)

2 i

and cos(βn) ≡ exp(i n β)+ exp(−i n β)
2 , the numerator of the previous formula can be written

as
NX
n=1

Xn
exp(i n β)− exp(−i n β)

2 i
·

NX
k=1

Xk
exp(i k β)− exp(−i k β)

2 i
+

NX
n=1

Xn
exp(i n β) + exp(−i n β)

2
·

NX
k=1

Xk
exp(i k β) + exp(−i k β)

2
=

2
NX
n=1

NX
k=1

Xn ·Xk
exp[i (n− k)β] + exp[−i (n− k)β]

4
=

NX
n=1

NX
k=1

Xn ·Xk · cos[β(n− k)] =

(N − | j |) · V ar(X)
N−1X

j=−N+1
ρj cos(β j)

This, divided by N, yields V ar(X)
∞P

j=−∞
ρj cos(β j) in the N → ∞ limit. Similarly

NP
n=1

X2
n

N → V ar(X). Thus, we get

ω(β) =
∞X

j=−∞
ρj cos(β j) ≡

∞X
j=−∞

ρj exp(i β j)

For the white-noise model, this results in ω(β) ≡ 1 (one is always the average value of any
model).
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For our autoregression models, there is yet another way of expressing ω(β), this time
directly in terms of the model’s α coefficients. First we rewrite

Xn = α1Xn−1 + α2Xn−2 + α3Xn−3 + ...+ �n

as
Xn = α1BXn + α2B2Xn + α3B3Xn + ...+ �n

where B is an operator which decreases the index of its argument by one. In the formal
manner, the previous equation can be rearranged as follows

Xn − α1BXn − α2B2Xn − α3B3Xn + ... = �n

and ’solved’ (rather symbolically) for Xn, thus:

Xn =
1

1− α1B − α2B2 − α3B3 + ...
�n ≡ f(B) �n

To find an explicit solution for Xn, all we have to do is to expand f(x) into the usual Taylor
series f0 + f1x+ f2x

2 + f3x
3 + .... and write

Xn = (f0 + f1B + f2B2 + f3B3 + ...) �n =

f0�n + f1�n−1 + f2�n−2 + f3�n−3 + ...

Now, since

ρk ≡
E(Xn ·Xn+k)

Var(Xn)
=

1

Var(Xn)
·

E[(f0�n + f1�n−1 + f2�n−2 + f3�n−3 + ...) ·
(f0�n+k + f1�n+k−1 + f2�n+k−2 + f3�n+k−3 + ...)]

=
(f0fk + f1fk+1 + f2fk+2 + f3fk+3 + ...)σ2

Var(Xn)
=

σ2

Var(Xn)

∞X
j=0

fj fj+k

for k non-negative. We can actually extend the previous formula to cover any k by writing

ρk =
σ2

Var(Xn)

∞X
j=−∞

fj fj+k

with the understanding that f−1 = f−2 = ... ≡ 0.
Our spectral density ω(β) can now be expressed as

σ2

Var(Xn)

∞X
k=−∞

∞X
j=−∞

fj fj+k exp(i k β) =

σ2

Var(Xn)

∞X
j=−∞

fj exp(−i j β)
∞X

k=−∞
fj+k exp(i β)

j+k =

σ2

Var(Xn)
f(ei β)

∞X
j=−∞

fj exp(−i j β) = σ2f(ei β)f(e−i β)
Var(Xn)
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Examples:
1. Markov model: Since V ar(Xn) =

σ2

1−ρ2 and f(x) =
1

1−ρx , we get

ω(β) =
1− ρ2

(1− ρ ei β) (1− ρ e−i β)
=

1− ρ2

1− 2 ρ cosβ + ρ2

(try to visualize the shape of the corresponding function).

2. Yule model:

ω(β) =
(1 + α2)(1− α1 − α2)(1− α2 + α1)

(1− α2)(1− α1ei β − α2e2i β)(1− α1e−i β − α2e−2i β)
=

(1 + α2)(1− α1 − α2)(1− α2 + α1)

(1− α2)[1 + α21 + α22 − 2α1(1− α2) cosβ − 2α2 cos 2β]
3. The Xi = 0.3Xi−1 + 0.1Xi−2 − 0.2Xi−3 + �i model: We already know that

V ar(Xi)
σ2 = 1.15. Thus,
ω(β) =

1

1.15 (1− 0.3ei β − 0.1e2i β + 0.2e3i β)(1− 0.3e−iβ − 0.1e−2i β + 0.2e−3i β)
=

1

1.15 (1.14− 0.58 cosβ − 0.32 cos 2β + 0.4 cos 3β)
Moving Averages (Filtering)

It is sometimes desirable to modify a sequence generated by any of the previous
(autoregressive, e.g. AR) models to (for example) smooth out its random oscillations. This
can be achieved by converting it into a new sequence of a so called moving averages,
thus

Yi ≡ Xi +Xi−1
2or

Yi =
Xi +Xi−1 +Xi−2

3
etc.

Yi = γ0Xi + γ1Xi−1 + γ2Xi−2 + ...
in general (this will correspond to an ’average’ only when the sum of all γ s equals to
1, but one can eventually allow anything else, e.g. Yi = Xi − Xi−1 – exploring the
daily increases/decreases, etc). Note that the new Yi sequence is no longer Markovian.
Nevertheless, since

Yi = (γ0 + γ1B + γ2B2 + ...)Xi =

γ0 + γ1B + γ2B2 + ...

1− α1B − α2B2 − α3B3 + ...
�n ≡ f(B) �n

the formulas of the previous section for finding ρk and constructing the corresponding
spectrum still hold.
We can also design the γ0+γ1B+γ2B2+ ... operator to deliberately suppress (up to total

elimination) or emphasize certain frequencies, this procedure is then called filtering.
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The corresponding ω(β) function is then called the filter’s response, clearly indicating
which frequencies will get suppressed (or emphasized), and by what factor.
Or, we can simply use

Yi =
γ0 + γ1B + γ2B2 + ...

1− α1B − α2B2 − α3B3 + ...
�n

as a general model of a random process, making it thus more flexible than the autoregressive
model alone (the new model is usually called ARMA, for obvious reasons).
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