SPECTRAL ANALYSIS

Any stationary Time-Series sequence will normally exhibit random cycles of various
frequencies. Depending on the model, some frequencies are more likely to occur that others.
The likelihood of generating a random cycle of a given frequency can be expressed in terms
of the so called SPECTRAL DENSITY, which is computed by matching the X; sequence to
an exact sin/cos sequence of a specific (angular) frequency £, i.e. Y,, = sin(8n + 6), and
adjusting the phase shift 6 to yield a maximum value of the following quantity:
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(reminiscent of computing %pQ between the two sequences). Note that it is sufficient to take
B from the [0, 7] interval, since w(B) = w(B + 27) = w(—73).
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we differentiate withrespect to 6, getting
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Setting this expression to zero yields four solutions (first two maximize, last two minimize):
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The maximum value of the original expression is thus
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The spectral density can thus be redefined as
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which is more convenient computationally (no messing up with 6), but loses the transparency
of its original meaning.

So far, we have made only an *empirical” definition of w(3), providing, effectively, only
its estimator. The ’theoretical’ definition of spectral density uses the expected value of the
previous expression in the N — oo limit. Realizig that sin(3n) = <2inA) ;fxp(_mﬁ )
exp(in )

and cos(fn) = ECXP(% "5) | the numerator of the previous formula can be written
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This, divided by N, yields Var(X) > p,cos(8j)inthe N — oo limit. Similarly
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For the white-noise model, this results in w(5) = 1 (one is always the average value of any
model).



For our autoregression models, there is yet another way of expressing w(/3), this time
directly in terms of the model’s « coefficients. First we rewrite
Xn=a1Xp_ 1+ Xy o+ a3 X, 3+...+¢,
as
X, = a1BX,, + asB2X,, + asB3 X, + ... + €,
where B is an operator which decreases the index of its argument by one. In the formal
manner, the previous equation can be rearranged as follows
X, —auBX, — uB?X, —asB3X, +...=
and ’solved’ (rather symbolically) for X,,, thus:
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To find an explicit solution for X, all we have to do is to expand f(z) into the usual Taylor
series fo + fix + fox? + fzx2 + ... and write
Xn = (fo+ fiB+ 2B+ fsB> + ) e, =
Joen + fren—1 + fon—2 + faen_3 + ...
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for k£ non-negative. We can actually extend the previous formula to cover any k by writing
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with the understanding that f 1 = f_o = ... = O.
Our spectral density w(f) can now be expressed as
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Examples:
1. Markov model: Since Var(X,) = lfzp? and f(z) = ﬁ, we get
1—p? 1—p?
w(B) = A = LA
(I=peP)(L—petP) 1—-2pcosf+p
(try to visualize the shape of the corresponding function).

2. Yule model:
w(ﬂ): (1+062)(1705170(2)(170[2+O[1) _
(1 —ao)(1 —agetf — age?P)(1 — are~iP — age—2i8)
(]. + 052)(1 — Q1 — OZQ)(]. — Qg + 041)

(1 —a2)[l+ a2 + a3 — 2a1(1 — az) cos f — 2as cos 23]

3. The X; = 0.3X;-1 +0.1X;,_2 —0.2X,_35 + ¢; model: We already know that
Var(Xs) — 1.15. Thus,
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~ 1.15(1.14 — 0.58 cos 8 — 0.32 cos 23 + 0.4 cos 33)

Moving Averages (Filtering)

It is sometimes desirable to modify a sequence generated by any of the previous
(autoregressive, e.g. AR) models to (for example) smooth out its random oscillations. This
can be achieved by converting it into a new sequence of a so called moving averages,
thus
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etc.

Y = 90X + 71 Xic1 X2 + .
in general (this will correspond to an ’average’ only when the sum of all s equals to
1, but one can eventually allow anything else, e.g. Y; = X; — X;_; — exploring the
daily increases/decreases, etc). Note that the new Y; sequence is no longer Markovian.
Nevertheless, since
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the formulas of the previous section for finding p, and constructing the corresponding
spectrum still hold.

We can also design the v+, B+ 582+ ... operator to deliberately suppress (up to total
elimination) or emphasize certain frequencies, this procedure is then called filtering.




The corresponding w(/3) function is then called the filter’s response, clearly indicating
which frequencies will get suppressed (or emphasized), and by what factor.
Or, we can simply use

Yo +71B+7.B + ...
1—oa1B—asBB2 — 053[)’3 + ... ‘n
as a general model of a random process, making it thus more flexible than the autoregressive
model alone (the new model is usually called ARMA, for obvious reasons).
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