
EXTENDING CENTRAL LIMIT THEOREM

Independent sum
Consider RIS of size n from a distribution with the mean of µ, the standard

deviation of σ and MGF M(t). The distribution of

Zn ≡
Pn

k=1
Xk−nµ

σ
√
n

tends, as n → ∞, to N (0, 1). This can be seen by first expanding lnM(t) in
terms of so called cumulants:

lnM(t) =
∞X
j=1

κjt
j

j!

where κ1 = µ, κ2 = σ2, κ3 = E
£
(X − µ)3

¤
, κ4 = E

£
(X − µ)4

¤ − 3σ4, etc.
Note that the conversion between cumulants and central moments is done by
expanding

lnMX−µ(t) = −µt+ lnMX(t) = ln

Ã
1 +

∞P
j=2

µjt
j

j!

!

where µj denote the corresponding central moment.
The MGF of Zn is constructed by taking the MGF of X − µ, namely

exp

Ã
∞P
j=2

κjt
j

j!

!

raising it to the power of n, and finally replacing t by t
σ
√
n
:

exp

Ã
∞P
j=2

κjt
j

nj/2−1σjj!

!
= exp( t

2

2 ) · exp
Ã
∞P
j=3

κjt
j

nj/2−1σjj!

!

The last expression clearly tends, as n→∞, to exp( t
2

2 ) of the Normal distribu-
tion, thus proving the Central Limit Theorem.
To get a better approximation, we expand the last factor in powers of 1√

n
,

thus:
1 + κ3t

3

6σ3
√
n
+

3σ2κ4t
4+κ23 t6

72σ6n +
54σ4κ5t

5+45κ3κ4σ
2t7+5κ33 t9

6480σ9n3/2
+ ...

To incorporate terms of this expansion in our approximation, we need the fol-
lowing Fourier-transform inverse

exp( t
2

2 ) · tj →
exp(− z2

2 )√
2π

Hj(z)
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where Hj(z) are monic polynomials (closely related to the usual Hermite poly-
nomials), namely

0 1
1 z
2 z2 − 1
3 z(z2 − 3)
4 z4 − 6z2 + 3
5 z(z4 − 10z2 + 15)
6 z6 − 15z4 + 45z2 − 15

Note that
Hj+1(z) = z ·Hj(z)−H 0

j(z)

which is a consequence of: multiplying a MGF by t results in differentiating the
corresponding Fourier-transform inverse (which can be used repeatedly).
EXAMPLE: Suppose X is exponential, with µ = 1. Zn is thus equal to Y −

√
n

where Y ∈ γ(n, 1√
n
), which means that is exact pdf is

(z+
√
n)n−1 exp[−(z+√n)√n]

(n−1)! nn/2 for z > −√n

We can easily find σ = 1, κ3 = 2 and κ4 = 6. The previous distribution can be
better approximated (discarding 1

n3/2
terms and beyond) by

exp(− z
2

2 )√
2π

³
1 + z(z2−3)

3
√
n
+ 2z6−21z4+36z2−3

36n + ...
´

General case
This technique can be extended to the case of g(X̄, Ȳ , ...). First we have to

define
Zn ≡ g−E[g]√

Var[g]

and then compute the first few terms of

1 + κ3t
3

6σ3 +
3σ2κ4t

4+κ23 t6

72σ6 + ...

where now the cumulants and σ are those of g(X̄, Ȳ , ...), correspondingly ex-
panded in powers of 1n .
A common technique for incorporating the skewness correction is to consider

a function (transformation) of g, say H(g), such that the skewness of H is, to
the 1√

n
approximation, equal to zero.

EXAMPLE: Returning to the exponential distribution (with mean β), we in-
vestigate the skewness of g(X̄). According to our previous formula, it is equal
to

g0(µ)3µ3+3g
0(µ)2g00(µ)σ4

n2 =

[g0(β)]3 2β
3

n2 + 3[g
0(β)]2g00(β)β

4

n2 +O( 1n3 )
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Making this equal to zero one has to solve

g0(β) +
3

2
g00(β) · β = 0

or

g00(β)
g0(β) = −2

3β

ln g0(β) = −23 lnβ + c̃

g0(β) = c.β−2/3

whose simplest solution is g = 3
√
β.

For the expected value, we then get

g(µ) + g00(µ)σ2

2n + ... =

3
p
β − β−5/3·β2

9n ... = 3
p
β − 3√β

9n ...

Similarly, the variance becomes

g0(µ)2σ2

n +
g0(µ)g00(µ)κ3+ 1

2 g
00(µ)2σ4+g0(µ)g000(µ)σ4

n2 + ... =

β2/3

9n +
− 4
27β

2/3+ 2
81β

2/3+ 10
81β

2/3

n2 + ... = β2/3

9n + ...

the third central moment is (to this level of approximation) equal to zero be
design, and the forth cumulant is

g0(µ)2[g0(µ)2κ4+12g0(µ)g00(µ)κ3σ2+12g00(µ)2σ6+4g0(µ)g000(µ)σ6]
n3 + ... =

1
9 [

2
3− 16

9 +
16
27+

40
81 ]β

4/3

n3 + ... = 2β4/3

93n3

The distribution of

3√
X̄− 3
√
β+

3√β
9n +...

3√β
3
√
n
+...

= 3
√
n

µ
3

q
X̄
β − 1 + 1

9n + ...

¶
is approaching N (0, 1) a lot faster than

X̄−β
β√
n

does. We can make it three times more accurate by using

e−z
2/2√
2π

³
1 + 2H4(z)

24×9n
´

Second EXAMPLE: We would like to have a good approximation to the dis-
tribution of

r ≡
Pn

i=1(Xi − X̄)(Yi − Ȳ )qPn
i=1(Xi − X̄)2 ·Pn

i=1(Yi − Ȳ )2
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Its exact distribution is known, but it is rather complicated.
One can show that the first four cumulants of r, divided by the corresponding

power of σr and expanded to the appropriate level of accuracy, are

µr = ρ
³
1− 1−ρ2

n + ...
´

σ2r = (1−ρ2)2
n

³
1 + 2+11ρ2

2n + ...
´

κ3
σ3r

= −6ρ√
n
+ ...

κ4
σ4r

= 72ρ2−6
n + ...

It is easy to construct the approximate pdf of r−µr
σr

.
If a similar procedure is followed to find the skewness of g(r), one gets:

−32ρg0(ρ)−(1−ρ2)g00(ρ)|g0(ρ)|√n + ...

To make it identically equal to zero, one needs to solve

2ρ
1−ρ2 =

g00(ρ)
g0(ρ)

or

− ln(1− ρ2) = ln g0(ρ)
g0(ρ) = 1

1−ρ2

g(ρ) =
R

dρ
1−ρ2 =

1
2 ln

1+ρ
1−ρ ≡ arc tanh ρ

This implies that arctanh r has zero skewness (to this level of accuracy), and
can thus be approximated by the (modified) Normal distribution a lot more
easily. We just have to re-compute

µg = arc tanh ρ+ ρ
2n + ...

σ2g = 1
n +

6−ρ2
2n2 + ...

and
κ4
σ4g
= 2

n + ...

Now, it is even easier to construct the approximate pdf of
arc tanh r−µg

σg
.

Bivariate and multivariate extension
Again, the first (and easiest) possibility is that we are dealing with two or

more sample means, say X̄, Ȳ , ... To find a good approximation for their joint
distribution, we must first construct the joint MGF of the distribution from
which we sample (should this become too difficult, we substitute the corre-
sponding expansion, up to and including the fourth moments). We then change
it to the MGF of Xi − µx, Yi − µy, ... by multiplying it by

e−µxt1−µyt2−...
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and finally to the MGF of a(Xi−µx), a(Yi−µy), ... by replacing each ti by ati
(where a represents 1√

n
).

Multiplying the log of this MGF by n (i.e. dividing it by a2) yields the CGF
of
√
n(X̄ − µx),

√
n(Ȳ − µy), ... This, we expand in powers of a (up to and

including a2 terms), getting C0(t1, t2, ..) + aC1(t1, t2, ..) + a2C2(t1, t2, ..) + ...
Taking the inverse transform of

eC0 · ¡1 + aC1 + a2C2 +
1
2a
2C21 + ...

¢
yields the joint pdf of

√
n(X̄ − µx),

√
n(Ȳ − µy), ... To make it into the joint

pdf of X̄, Ȳ , ..., we have to make the following replacement

x → x−µx
a

y → y−µy
a

...

multiplying the result by a2 (a3 for three variables, etc.). Finally. we change a
to 1√

n
.

To find a good approximation to the joint pdf of
g(X̄,Ȳ ,..)−µg

σg
, h(X̄,Ȳ ,..)−µh

σh
,

...(now it is more convenient to work in the ’Z scale’), we would have to work out
the mean of each g(X̄, Ȳ , ..), h(X̄, Ȳ , ..), ... to the 1

n accuracy, the variance and
all covariances to the 1

n2 accuracy, all third-order cumulants to the
1
n2 accuracy,

and all forth-order cumulants to the 1
n3 accuracy. The CGF of

g(X̄,Ȳ ,..)−µg
σg

and
h(X̄,Ȳ ,..)−µh

σh
(I will show the bivariate case only) can then be written as

t21+t
2
2+2ρght1t2
2 +

γ30t
3
1+3γ21t

2
1t2+3γ12t1t

2
2+γ03t

3
2

6 +

γ40t
4
1+4γ31t

3
1t2+6γ22t

2
1t
2
2+4γ13t1t

3
2+γ04t

4
2

6

where γij are the ’normalized’ cumulants, i.e.
κij

σigσ
j
h

. Note that the third-order

(fourth-order) γ cumulants are proportional to 1√
n
( 1n). Also note that ρgh

would (in general) consist of an absolute term, and an 1
n proportional term, say

ρ0+
ρ1
n + ... To get the answer, we ask Maple to give us the inverse transform of

exp
³
t21+t

2
2+2ρght1t2
2

´
·
h
1 +

γ30t
3
1+3γ21t

2
1t2+3γ12t1t

2
2+γ03t

3
2

6 +

γ40t
4
1+4γ31t

3
1t2+6γ22t

2
1t
2
2+4γ13t1t

3
2+γ04t

4
2

6 +³
γ30t

3
1+3γ21t

2
1t2+3γ12t1t

2
2+γ03t

3
2

6

´2
+ ...

¸
Appendix A: Third-order cumulants are just the corresponding 3rd central

moments. Fourth-order cumulants are a bit more tricky, in general

κ1111 = µ1111 − µ1100µ0011 − µ1010µ0101 − µ1001µ0110
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This reduces to the old
κ4 = µ4 − 3σ4

in case of one random variable, to

κ31 = µ31 − 3µ20µ11
κ22 = µ22 − µ20µ02 − 2µ211

in case of two, and to

κ211 = µ211 − µ200µ011 − 2µ110µ101
in case of three.
Appendix B: The inverse transform of

exp
³
t21+t

2
2+2ρ0t1t2
2

´
is

exp

"
x2+y2−2ρ0xy

2(1−ρ2)

#
2π
√
1−ρ2

(this is done in MATH 2P81/2). If the first function is multiplied by tj1t
k
2 , the

second function is differentiated j times with respect to x and k times with
respect to y. Thus, we get

j k H(x, y)
1 1 XY + ρ

1−ρ2
2 1 X2Y − Y−2ρX

1−ρ2
3 1 X3Y − 3X(Y−ρX)

1−ρ2 − 3ρ
(1−ρ2)2

2 2 X2Y 2 − X2+Y 2−4ρXY
1−ρ2 + 1+2ρ2

(1−ρ2)2

where X ≡ x−ρy
1−ρ2 and Y ≡ y−ρx

1−ρ2
For more than two variables, one would express the MGF in the vector form

of
exp

³
tT Ct
2

´
and express its inverse as

exp

µ
xT C−1x

2

¶
(2π)c/2

√
detC

where c is the number of variables. Multiplying the first function by a product
of t powers, one would have to correspondingly differentiate the second function.
Example: The method-of-moments estimators of α and β parameters of the

gamma distribution are

X̄2

X2−X̄2

X2−X̄2

X̄
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respectively.
Expanding these, one gets:

α+ 21+αβ (X̄ − µx)− X2−µy
β2

+ 1+5α+4α2

αβ2
(X̄ − µx)

2

+
(X2−µy)2

αβ4
− 21+2α

αβ3
(X̄ − µx)(X

2 − µy) + ...

and

β − 1+2α
α (X̄ − µx) +

X2−µy
αβ + 1+α

α2β (X̄ − µx)
2

− (X̄−µx)(X2−µy)
α2β2

+ ...

where µx = αβ and µy = E(X2) = α(1 + α)β2.
Using

E
£
(X − µx)

2
¤
= αβ2

E
£
(X2 − µy)

2
¤
= 2α(1 + α)(3 + 2α)β4

E
£
(X − µx)(X

2 − µy)
¤
= 2α(1 + α)β3

and similar formulas for third powers, one finds that the expected values of the
two estimators are α+3(1+α)

n +... and β− (1+α)βnα +..., their variances are 2α(1+α)n +

... and (3+2α)β2

nα + ..., and their correlation coefficient equals −
q

2(1+α)
3+2α + .... The

four values of skewness are

2(2α− 1)
q

2
nα(1+α) + ...

4(2− α)
q

1
nα(3+2α) + ...

−14
q

2(1+α)
nα(3+2α) + ...

46+52α+8α2

3+2α

q
1

nα(3+2α) + ...

which would enable us to build a 1√
n
accurate approximation.

The maximum likelihood technique gives the following (different, but more
complicated) estimators:

α̂ = g
¡
ln X̄ − lnX¢

β̂ = X̄
α̂

where g(x) is the inverse function to lnx−Ψ(x).
Expanding these, one gets:

α+ X̄−µx
β[1−αΨ0(α)] − α

1−αΨ0(α) (lnX − µy)

+2Ψ0(α)−αΨ0(α)2+αΨ00(α)
2β2[1−αΨ(α)]3 (X̄ − µx)

2 + α[1+α2Ψ00(α)]
2[1−αΨ(α)]3 (lnX − µy)

2

− 1+α2Ψ00(α)
β[1−αΨ(α)]3 (X̄ − µx)(lnX − µy) + ...
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and

β − X̄−µx
1−αΨ0(α) +

β
1−αΨ0(α) (lnX − µy)

−Ψ0(α)2+Ψ00(α)2β[1−αΨ(α)]3 (X̄ − µx)
2 + β[1−2αΨ0(α)−α2Ψ00(α)]

2[1−αΨ(α)]3 (lnX − µy)
2

+α[Ψ0(α)2+Ψ00(α)]
[1−αΨ(α)]3 (X̄ − µx)(lnX − µy) + ...

where now µy = Ψ(α) + lnβ. With the help of

E
£
(lnX − µy)

2
¤
= Ψ0(α)

E
£
(X − µx)(lnX − µy)

¤
= β

the expected values are now equal to

α+ 1+α+α2Ψ(2,α)
2nα[αΨ(1,α)−1] + ...

β
³
1− 1−α+α2Ψ(2,α)

2nα2[αΨ(1,α)−1]
´
+ ...

the variances are

α
n[αΨ(1,α)−1] + ...

β2Ψ(1,α)
n[αΨ(1,α)−1] + ...

and the correlation coefficient is

−
q

1
αΨ(1,α) + ....
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