LARGE-SAMPLE THEORY
The distribution of a function of several sample means, e.g.
9(X.Y)
is usually too complicated. The central limit theorem states that this distribu-
tion tends, as N — o0, to a Normal distribution with the mean of
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and a variance given by
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When dealing with a random independent sample of X, Y pairs (a special case
which does NOT apply to to time-series formulas quoted below), we get
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The general formula can be derived from
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The error of this approximation is of the O (Tlﬁ) type. To remove this
error, on has to include an extra term to the mean, thus:
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which, in the RIS case, reduces to
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(pq,1 indicates the corresponding central moment, namely the covariance be-
tween one X and the corresponding Y').
It is also necessary to incorporate the \/Lﬁ proportional skewness, based on

the following third central moment of g(X) (assuming, for simplicity, that there
is only one X involved):
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For RIS, this yields
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where 1153 and p, are the central moments of the X distribution.

For the special case of RIS and g(X), we get the following formulas
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where r; are cumulants of the X distribution, and u, denotes the expected value
of g(X).
The last expression can be easily converted into the corresponding 4th cu-

mulant of g(X), getting
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