
MONTE CARLO TECHNIQUES
Generating pseudo-random numbers

from UNIFORM distribution:
We take the interval to be [0, 1]; a simple transformation can change this to any [a, b].
The simplest (and usually sufficient) technique uses multiplicative congruen-

tial generator, which works as follows:
Xn+1 = aXn mod m

Un+1 =
Xn+1

m
where a is the multiplier,m the modulus, andX0 the seed.

EXAMPLE: a = 22, m = 25, X0 = 17, yields (for X1, X2, ...): 24, 3, 16, 2, 19, 18,
21, 14, 8, 1, 22, 9, 23, 6, 7, 4, 13, 11, 17, 24, 3,...(repeating).
The most practical choice ofm is 2c (where c is the number of bits a specific computer

uses for integer multiplication).
One can show that, in this case, the longest sequence one can generate is of length 2c−2

(c > 3), but only when X0 is odd and a = 3 or 5 mod 8 (when a = 7 or 9 mod 16, the
length is 2c−3, etc.).
Thus, for a 48 bit machine, we get a sequence of length 246 = 7.036 9× 1013 (a million

of these every second would keep you going for over two years - 64 bit machine gives you
enough numbers for over half a million years).
But there are other possibilities: m = 231 − 1 has been a fairly popular choice (the

longest length of the corresponding sequence is 231 − 2, i.e. goes over all integers but 0,
since 231 − 1 is a prime number).
Also, a slightly more sophisticated generator is of the linear congruential type

where, after each multiplication, we also add a number, thus
Xn+1 = aXn + c mod m

where c is usually equal to 1 (I have also seen 11).
Exponential distribution
Solving

F (x) = 1− e−x/β = U
for x yields

X = −β ln(1− U)
Gamma
Just add k independent exponentials.
Normal (standardized)
Since we don’t have an explicit expression for F (z), the following polar method is

used:
Generate X and Y independently from U(−1, 1). Check if these are inside the unit
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circle, i.e. W ≡ X2 + Y 2 < 1. If not, discard and try again. Then

Z1 = X

r
−2 lnW

W

Z2 = Y

r
−2 lnW

W

are independent from N (0, 1).
Proof: Obviously, f(x, y) = 1

π . Also, the inverse transformation, namely

x =
z1p

z21 + z22
· exp

³
− z21+z

2
2

4

´
y =

z2p
z21 + z22

· exp
³
− z21+z

2
2

4

´
has a Jacobian with the absolute value of

1

2
exp

³
− z21+z

2
2

2

´
Chi-square
Add k independent Z2i .
Bernoulli
If U < p return 1, otherwise return 0.
Binomial
Add n independent Bernoulli RVs.
Geometric ·

lnU

ln(1− p)

¸
where brackets imply truncation to an integer.

Proof: Suppose Y is exponential with the mean of β. Then, [Y ] has the following
probability function: f(i) = exp(− i

β ) − exp(− i+1
β ) ≡ p · qi with p = 1 − exp(− 1

β ).

Solving this for β, we get − 1
ln(1−p) .

Poisson
Count how many independent exponentially distributed CVs (with β = 1) can you fit

into a interval of length λ.
In general (hypergeometric, etc.), we would compare U to the corresponding F (i).
Selecting a RIS (without replacement)
or, equivalently, select k integers out of 1..n, thus:
Set j = k, then, for i from 1 to n, if U < j

n−i+1 select i and decrease j by 1.
Estimating distribution function F (x) and pdf f(x)

For F (x), we use
1

n

nX
i=1

I(Xi < x)

where I (the indicator function) equals 1 when the condition is met, 0 otherwise.
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Example (gamma2,1):

To estimate f(x) is a bit more difficult, we use

1

nh

nX
i=1

φ(x−Xi

h )

where
φ(u) =

3

4
max(1− u2, 0)

and
h ≈ 2× st.dev.

n0.2
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Example:

Sampling a multivariate distribution (Quantum-Chemistry application)
Suppose we have a function of several variables, say ψ(R) ≥ 0. Then,

f(R) =
ψ(R)Z

· · ·
Z

ψ(R)dR

is clearly a multivariate pdf. To generate a sample of configurations from this
distribution, we first realize that f(R) meets the following PDE

−1
2
∇2 f +∇ • F f = 0

where
F ≡ ∇ψ(R)

2ψ(R)
Proof:
∇ • F f = ∇•∇ψ(R)2c = ∇

2ψ(R)
2c and∇2 f = ∇

2ψ(R)
c .

We will now try to solve

−1
2
∇2 f +∇ • F f = −∂f

∂t
instead (and take its stationary solution).
There is a Green’s-function solution to

−1
2
∇2 f = −∂f

∂t
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namely

(2πt)−d/2 exp
·
−(R−R0)

2

2t

¸
(d is the dimension ofR) and to

∇ • F f = −∂f
∂t

namely

δ[R− R̃(t)] where dR̃(t)
dt

= F[R̃(t)] and R̃(0) = R0

Each of these has a nice statistical and ’physical’ interpretation, called diffusion and
drift respectively.
The Green’s function to the original equation does not have a simple analytical form,

but for small t (called time step) it can be approximated by applying drift and diffusion
consecutively (this is called an iteration). Using a specific (small) time step, we first
generate an arbitrary ensemble of configurations which we then keep on advancing (by
repeated drift/diffusion) until a stationary situation is reached (we can tell by monitoring one
or more averages). We then continue averaging, until a good estimate (for each quantity of
interest) is obtained. Note that consecutive iteration averages are not independent (since we
are dealing with a complicated time-series process).
There are two ways of removing the time-step error:
Use several time steps (e.g. 0.01, 0.02, 0.03), then extrapolate all your averages to t = 0.
UseMetropolis sampling, which removes the time-step error (even when t is relatively

large).
This is done by computing, at the end of each iteration, the following quantity (one for

every configuration)
T ≡
ψ(R)

ψ(R0)
· exp

µ
[(R−R0 − tF(R0)]

2 − [(R0 −R− tF(R)]2

2t

¶
where R0 represents the starting location, R is the new location (after drift and diffusion).
The actual ’move’ is then accepted with probability T (a uniform random number needs to
be generated, to make this decision). If a move is rejected, we simply return to R0 (stay
put). One should monitor ’staleness’ of each configuration. Note that T may occasionally be
bigger than 1 (in which case we automatically accept the move).

Example (one-dimensional):
ψ = exp(−R2/2)

p
ln(2 +R2)

Using 200 configurations and 100 iterations at t = 0.1, 0.2 and 0.3, we get, for the
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distribution’s variance:

This is how the individual results looked like, for t = 0.1:
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With Metropolis, we get at t = 0.3
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