MONTE CARLO TECHNIQUES
Generating pseudo-random numbers
from UNIFORM distribution:
We take the interval to be [0, 1]; a simple transformation can change this to any [a, b].
The simplest (and usually sufficient) technique uses multiplicative congruen-
tial generator, which works as follows:

Xpy1 = aX, mod m
Xnt1

Un+1 -
m

where a is the multiplier, m the modulus, and X the seed.

EXAMPLE: a = 22, m = 25, Xy = 17, yields (for X1, X5, ...): 24, 3, 16,2, 19, 18,
21,14,8,1,22,9,23,6,7,4, 13, 11, 17, 24, 3,...(repeating).

The most practical choice of m is 2¢ (where ¢ is the number of bits a specific computer
uses for integer multiplication).

One can show that, in this case, the longest sequence one can generate is of length 2¢~2
(¢ > 3), but only when X is odd and ¢ = 3 or 5 mod 8 (when a = 7 or 9 mod 16, the
length is 2673, etc.).

Thus, for a 48 bit machine, we get a sequence of length 246 = 7.036 9 x 10'3 (a million
of these every second would keep you going for over two years - 64 bit machine gives you
enough numbers for over half a million years).

But there are other possibilities: m = 23! — 1 has been a fairly popular choice (the
longest length of the corresponding sequence is 23! — 2, i.e. goes over all integers but 0,
since 23! — 1 is a prime number).

Also, a slightly more sophisticated generator is of the 1inear congruential type
where, after each multiplication, we also add a number, thus

Xpy1=aX,+c mod m

where c is usually equal to 1 (I have also seen 11).
Exponential distribution

Solving
Flz)=1—e/f=U
for z yields
X =—-FIn(1-0)
Gamma

Just add £ independent exponentials.

Normal (standardized)

Since we don’t have an explicit expression for F'(z), the following polar method is
used:

Generate X and Y independently from /(—1,1). Check if these are inside the unit



circle, i.e. W = X2 +Y? < 1. If not, discard and try again. Then

[—2InW
7z = X -
[—2In W
Zy =Y —W
are independent from N(0, 1).

Proof: Obviously, f(z,y) = % Also, the inverse transformation, namely

21 2,2
T = 7-exp(—%>

29 2,2
y = 7.exp(,¥>

has a Jacobian with the absolute value of

Chi-square

Add k independent Z?.

Bernoulli

If U < preturn 1, otherwise return 0.

Binomial

Add n independent Bernoulli RVs.

Geometric

InU
=
where brackets imply truncation to an integer.

Proof: Suppose Y is exponential with the mean of 5. Then, [Y] has the following
probability function: f(i) = exp(—%) — exp(—5*) = p- ¢' withp = 1 — exp(—3).
Solving this for /3, we get —

Poisson

Count how many independent exponentially distributed CVs (with 5 = 1) can you fit
into a interval of length A.

In general (hypergeometric, etc.), we would compare U to the corresponding F'(3).

Selecting a RIS (without replacement)

or, equivalently, select & integers out of 1..n, thus:

Set j = k, then, for i from 1 to n, if U < 7=t select i and decrease j by 1.

Estimating distribution function F'(z) and pdf f(x)
For F'(x), we use

1
In(1—p)

1 n
- ;I(X,- <)

where [ (the indicator function)_equals 1 when the condition is met, O otherwise.



Example (gammay 1):
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To estimate f(x) is a bit more difficult, we use

I . x
% Z ¢( hX1 )
i=1
where 5
o(u) = 1 max (1 — u?,0)
and

2 x st.dev.
h ~ — s
no-



Sampling a multivariate distribution (Quantum-Chemistry application)
Suppose we have a function of several variables, say ©)(R) > 0. Then,

 u®)
F(R) = / /wmm

is clearly a multivariate pdf. To generate a sample of configurations from this
distribution, we first realize that f(R) meets the following PDE

_%V2f+VoFf:O
where
Vy(R)
2¢(R)
Proof:

VeF [ = VoVJ;(R) _ VQ;[JC(R) and V2 f= V2p(R)

C

We will now try to solve

instead (and take its stationary solution).
There is a Green’s-function solution to
1



namely

- R — Ry)?
9 d/2 _ ( 0
(2mt) exp [ —
(d is the dimension of R) and to
of
VeF f=—-——
“FI="%

namely

SR — R(#)] where df;ft) — F[R(t)] and R(0) = Ry

Each of these has a nice statistical and "physical’ interpretation, called diffusion and
drift respectively.

The Green’s function to the original equation does not have a simple analytical form,
but for small ¢ (called time step) it can be approximated by applying drift and diffusion
consecutively (this is called an iteration). Using a specific (small) time step, we first
generate an arbitrary ensemble of configurations which we then keep on advancing (by
repeated drift/diffusion) until a stationary situation is reached (we can tell by monitoring one
or more averages). We then continue averaging, until a good estimate (for each quantity of
interest) is obtained. Note that consecutive iteration averages are not independent (since we
are dealing with a complicated time-series process).

There are two ways of removing the time-step error:

Use several time steps (e.g. 0.01, 0.02, 0.03), then extrapolate all your averages to ¢t = 0.

Use Metropolis sampling, which removes the time-step error (even when ¢ is relatively
large).

This is done by computing, at the end of each iteration, the following quantity (one for
every configuration)

T=

YR ([(R —Ro —tF(Ro)]” — [Ro — R — tF(R)P)

¥ (Ryo) 2t
where R represents the starting location, R is the new location (after drift and diffusion).
The actual *'move’ is then accepted with probability 7" (a uniform random number needs to
be generated, to make this decision). If a move is rejected, we simply return to Ry (stay
put). One should monitor ’staleness’ of each configuration. Note that 7' may occasionally be
bigger than 1 (in which case we automatically accept the move).

Example (one-dimensional):

Y = exp(—R?/2)/In(2 + R2)
Using 200 configurations and 100 iterations at £ = 0.1, 0.2 and 0.3, we get, for the




distribution’s variance:
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With Metropolis, we get at ¢t = 0.3
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