
1 Solving a normal equation for a MLE

Suppose the normal equation reads

G(X, µ̂) = 0

where µ̂ is the MLE of µ.
This can be expanded to

g0 + g1 · d+ g2 · d
2 + g3 · d

3 = 0 (1)

where

gi ≡
G(i)(X,µ)

i!

d ≡ µ1ε+ µ2ε
2 + µ3ε

3

G(i) is the ith derivative of G with respect to its second argument, µ is the true
value of µ, and d = µ̂−µ (expanded to include the 1√

n
, 1
n

and 1
n3/2

proportionate

corrections - ε is the corresponding ‘marker’ whose value is 1).
Replacing each gi by ε ·(gi−mi)+mi ≡ ε ·Ui+mi, where mi ≡ E (gi) - note

that m0 must be identically 0 (it is useful to verify it, as a ‘warm up’ exercise)
- we can expand the LHS of (1) in ε, getting:
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Making each coefficient equal to 0 yields the following solution:
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