1.
a. full length of 22 x 53: We can either squeeze the full length out of the 5% subgroup, by meeting this
condition:
=2,3mod 5 but # 7,18 mod 25
OR we can get the 22 length from the 2% subgroup, and the 5° length from 57 by

=3,5 mod 8 AND # 1,24,7,18 mod 25
(here, we should also add AND # 0 mod 5).
b. length 125: We have to get the 5° length (exactly) from the 5% subgroup, and length 1 fromR7, thus
=6,11,16,21 mod 24 AND =1 mod 16

2. For Metropolis simulation of a sample from

we use our standard program with F'(z) = —z.

3. First, we find the marginal distribution function of X, make it equal to U7, and solve for X:
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Then, we get the conditional distribution function of Y'| X, make it equal to Us, and solve for Y:
flylz) =e*"Y  F(ylz)=1-—e""Y Y=X-In(1-10>)

4. First, we get the first four cumulants of /(0,1): k1 = %, Ko = %, k3 = 0 (these, we remember from

MATH 2P81) and ;4 = 155. Secondly, we evaluate the first three derivatives of g(z) = 7z atz = 3,
getting: ¢ = 528, ¢” = 732 and ¢’ = 22X Then, using our formulas, we find the following four
cumulants of rlgzi
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The approximation follows easily.
5. This time, g(z) = exp(2), implying ¢’ = —4ae®® and g” = 16a(1 + a)e**. Solving

k39’ + 3k39" = $e**(1 + a) = 0 yields @« = —1. Recomputing ¢’ = 4e~2 and g"” = 0 and



g"" = —32e~2, and plugging into our formulas yields:

implying

. The normal equation is
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Building the actual PDF is easy.
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Secondly, the MGF of In(X}) is

/ et<ln(m)€fxd$ — / xte*mdx = F(l + t)
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(this is the Gamma function now - Maple knows how to handle it). Answer:

4 4

d 7

t=0



