
1 Cyclic group of order n
is, effectively, the set Zn under additionmod n. It is isomorphic to

pk11 ⊕ pk22 ⊕ ...⊕ pkc (1)

where pk is our notation for cyclic group of order pk, and pk11 pk22 ...pkc is the prime
decomposion of n.
The isomorphism is a ‘natural’ one, i.e. when j ∈ Zn, the corresponding element of (1)

is ³
jmod pk11 , jmod pk22 , ..., jmod pkc

´
EXAMPLE: When n = 72 = 23 × 32, the nubers 31 and 53 are represented by (7, 4) and
(5, 8) respectively. Adding the last twomod (23, 32) yields (4, 3), which corresponds to the
correct answer of 12 (Maple’s ‘isolve’ can help you find it).¥
It is obvious that pk has pk − pk−1 elements of order pk, pk−1 − pk−2 elements of order

pk−1, ..., p − 1 elements of order p, and one element of order 1, and it is also clear what
these are (not divisible by p, divisible by p but not p2, .... etc.).
Similarly, we can tell what is the order of any element of (1), and how many elements of

each order they are (as the orders of individual components simply multiply).

2 Abelian groups of order n
are not all of the above type. In the simplest case of n = pK , there are ‘numbpart(K)’

number of possiblities, from pK to p⊕ p⊕ ... ⊕ p (K of these). Taking any one of these,
say

pk1 ⊕ pk2 ⊕ ...⊕ pk
where k1 ≥ k2 ≥ ... ≥ kc we can see that the largest possible order of an element is pk1 ,
and that this will be achieved by making the first component not divisible by p (the other
components can be arbitrary). When k2 = k1, this can be also achived by making the second
component not divisible by p. and the rest arbitrary, etc.
So, in general, when k1 = k2 = ... = km, there are

n

µ
1− 1

pm

¶
such maximum-order elements, where n = pK .
When different primes are involved, we just multiply these.
EXAMPLE: The group

23 ⊕ 23 ⊕ 2⊕ 54 ⊕ 53
has 27(1 − 1

22 ) × 57(1 − 1
5) = 6, 000, 000 elements of order 2

3 × 54 = 5000. These can
be found by making the first or the second component not divisible by 2, and the fourth
component no divisible by 5 (the remaining components can be arbitrary).¥
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3 Multiplicative groupmod n
consists of all elements ofZn which are relatively prime to n (i.e. when n = pk00 pk11 ...pkc ,

they are not divisible by p0, p1, ..., pc).We will denote this group by n. One can show that
this group is isomorphic to

pk00 ⊗ pk11 ⊗ ...⊗ pkc (2)
under the same ‘natural’ isomorphism as before. Clearly, the size of pk is pk − pk−1 =
(p−1)pk−1, so the size of the whole n group is (p0−1)pk0−10 (p1−1)pk1−11 ...(pc−1)pk −1c .
EXAMPLE: When n = 72, multiplying 31 and 53 results, in the (7, 4) and (5, 8)

representation, in (3, 5), which corresponds to the correct answer of 51.
Now comes the main point: as an Abelian group, pk must be also isomorphic to one of

the groups of the previous section (of the same size). Luckily, it happens to be
(p− 1)⊕ pk−1

when p 6= 2 and
2⊕ 2k−2

when p = 2. The exact isomorphism is now more complicated (it clearly cannot be of a
‘natural’ type).
From now on thus becomes convenient to use the following notation for the prime

decomposion of n
n = 2k0pk11 pk22 ...pkc

In conclusion, the corresponding group n is isomorphic to

2⊕ 2k0−2 ⊕ (p1−1)⊕ pk1−1 ⊕ (p2−1)⊕ pk2−1 ⊕ ...⊕ (pc−1)⊕ pk −1
where each of the (p− 1) components can and should be further decomposed.
EXAMPLE: 9000 is isomorphic (based on 9000 = 233253) to

(2⊕ 2)⊕ (2⊕ 3)⊕ ¡4⊕ 52¢
or

22 ⊕ 2⊕ 2⊕ 2⊕ 3⊕ 52
The maximum order of an element is 22 × 3× 52 = 300, and there is 25(1 − 1

2) × 3(1 −
1
3)× 52(1− 1

5) = 640 of these. In the additive representation, it is easy to tell what they are,
but that does not tell us how to find them in the original 9000 .¥
In general, we have to figure it out for each pk individually and then, using (2), to put

everything together.
Let’s try to do this, first for the simplest case of 3k:
When k = 1

# period
1 1
2 2
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When k = 2
# period
1 1

1 + 3 = 4, 1 + 6 = 7 3
2 + 6 = 8 2
2, 2 + 3 = 5 6

When k = 3
# period
1 1

1 + 9 = 10, 1 + 18 = 19 3
4, 4 + 9 + 13, 4 + 18 = 22
7, 7 + 9 = 16, 7 + 18 = 25

9

8 + 18 = 26 2
8, 8 + 9 = 17 6

2, 2 + 9 = 11, 2 + 18 = 20
5, 5 + 9 = 14, 5 + 18 = 23

18

Starting from k = 2, the last row (of full-period elements) always consists of all numbers
whose mod 9 equals 2 or 5. If we are happy with half the full period, we would take
numbers whosemod 9 equals 4 or 7, one third of the full period requiresmod 9 equal to 8.
Similarly, for 5k we get:
When k = 1

# period
1 1
4 2
2, 3 4

When k = 2
# period
1 1

1 + 5 = 6, 1 + 10 = 11, 1 + 15 = 16, 1 + 20 = 21 5
4 + 20 = 24 2

4, 4 + 5 = 9, 4 + 10 = 14, 4 + 15 = 19 10
2 + 5 = 7, 3 + 15 = 18 4

2, 2 + 10 = 12, 2 + 15 = 17, 2 + 20 = 22
3, 3 + 5 = 8, 3 + 10 = 13, 3 + 20 = 23

20

This implies that 2, 3, 8, 12, 13, 17, 22, 23 mod 25 will always yield the full period (for any
k ≥ 2), 4, 9, 14, 19 mod 25 yield half a full period, and 6, 11, 16, 21 mod 25 yield one
quarter of a full period.
And, finally, the ‘exceptional’ case of 2k:
When k = 1

# period
1 1
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When k = 2
# period
1 1

1 + 2 = 3 2
When k = 3

# period
1 1

1 + 4 = 5, 3, 3 + 4 = 7 2
When k = 4

# period
1 1

1 + 8 = 9, 7, 7 + 8 = 15 2
3, 5, 3 + 8 = 11, 5 + 8 = 13 4

and it is from this point onwards (k ≥ 4) that all numbers whose mod 8 equals 3 or 5 yield
the full period. (Half-full period would require one more step, resulting in 7, 9 mod 16).

4


