
1. A good choice of τ is in the 0.25 to 0.35 range, the grand mean should be
in the 0.377 to 0.384 range, with standard error (which is estimated based
on only 5 values, i.e. not very precisely) in the 0.004 to 0.008 range.

2. In the 515 subgroup, the number must = 1 mod 55 but 6= 1 mod 56 (i.e.
of the 1 + 55k type, where k is not divisible by 5).

In the 715 subgroup, the number must = 1 mod 75 but 6= 1 mod 76 (i.e.
of the 1 + 75c type, where c is not divisible by 7).

Overall, this means that, after subtracting 1, the number (let us call it
a) must have exactly five powers of 5 and exactly five powers of 7 (i.e. it
has the form of 1+ 355j, where j is any integer not divisible by 5 and not
divisible by 7 - the easiest choice is 1 + 355).

To verify that we have made a correct (specific) choice of a, compute a35
10

mod 3515 (in a do loop which does a := a35 mod 3515 ten times). The
answer must equal to 1. But that is not all: similarly, we have to check
that NEITHER a5×35

9

mod 3515 NOR a7×35
9

mod 3515 are equal to 1.

3. First, we find (either by direct integration, or through MGF) the first 4
cumulants of the distribution:
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Generating 1000 RISs of size 15 and computing their sample means is easy.
For the corresponding emirical distribution, using h = 0.0225 seems the
optimal choice.

4. The normal equation is

X − â
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= 0
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Expanding â the usual way (up to and including ε2), then correspondingly
expanding the LHS of the previous equation (in the usual two steps) yields³
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For â, we thus get
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(on closer inspection one can see that the distribution of â must be sym-
metrical about α - no wonder the exact mean is α, and skewness is zero!).
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-accurate approximation is, in this case (as for all symmetric distribu-

tions) the same as the basic Normal approximation, namely
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Solving the normal eqaution with the given values of X is easy (with the
help of ’fsolve’); since we get 3 roots (but we know that the solution is
unique) we have to find which of those 3 roots corresponds to the highest
value of the Likelihood function (or its logarithm) - that proves to be (not
surprisingly) 1.679. By the way, 87.29 was not a typo - Cauchy distribution
is well known for yielding (quite legitimately) ‘crazy’ values once in a while.

5. The normal equations are

Ψ(α̂) + ln β̂ = lnX

α̂β̂ = X

Doing the usual ε expansion (this time, only to the ε accuracy) yields
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ε+ ... = εŪ +Ψ(α) + lnβ

αβ + (α1β + αβ1)ε+ ... = εV̄ + αβ

2



where

Ū = lnX −Ψ(α)− lnβ
V̄ = X − αβ

Solving:
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αβŪ − V̄

β[αΨ(1, α)− 1]
β1 =
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This implies that

ρ =
−1p

αΨ(1, α)

The basic Normal approximation is
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Solving the two normal equation with our set of X values is again quite
easy with the help of ’fsolve’; the result is: α̂ = 0.3247 and β̂ = 1.932.
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