1. A good choice of 7 is in the 0.25 to 0.35 range, the grand mean should be
in the 0.377 to 0.384 range, with standard error (which is estimated based
on only 5 values, i.e. not very precisely) in the 0.004 to 0.008 range.

2. In the B subgroup, the number must = 1 mod 5° but # 1 mod 5% (i.e.
of the 1+ 5°k type, where k is not divisible by 5).

In the 77 subgroup, the number must = 1 mod 7° but # 1 mod 7° (i.e.
of the 1+ 7°¢ type, where ¢ is not divisible by 7).

Overall, this means that, after subtracting 1, the number (let us call it
a) must have exactly five powers of 5 and exactly five powers of 7 (i.e. it
has the form of 1+ 35°3, where j is any integer not divisible by 5 and not
divisible by 7 - the easiest choice is 1 + 35°).

To verify that we have made a correct (specific) choice of a, compute 35"’
mod 35'° (in a do loop which does a := @3> mod 35'5 ten times). The
answer must equal to 1. But that is not all: similarly, we have to check
that NEITHER a®*35° mod 35'° NOR a7*3%" mod 35'° are equal to 1.

3. First, we find (either by direct integration, or through MGF) the first 4
cumulants of the distribution:
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L_accurate approximation for f(Z) is the usual
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Generating 1000 RISs of size 15 and computing their sample means is easy.
For the corresponding emirical distribution, using h = 0.0225 seems the
optimal choice.

4. The normal equation is



Expanding a the usual way (up to and including €2), then correspondingly
expanding the LHS of the previous equation (in the usual two steps) yields

_ [6% — [0
(U—Zl>5+(a1V—I2)£2+...:0

where
_ X —«o
vo= 1+ (X —a)?
_ 2(X — a)? 1 1
o X —ap 1

For a, we thus get
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(on closer inspection one can see that the distribution of & must be sym-
metrical about « - no wonder the exact mean is «, and skewness is zero!).
ﬁ—accurate approximation is, in this case (as for all symmetric distribu-

tions) the same as the basic Normal approximation, namely
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Solving the normal eqaution with the given values of X is easy (with the
help of ’fsolve’); since we get 3 roots (but we know that the solution is
unique) we have to find which of those 3 roots corresponds to the highest
value of the Likelihood function (or its logarithm) - that proves to be (not
surprisingly) 1.679. By the way, 87.29 was not a typo - Cauchy distribution
is well known for yielding (quite legitimately) ‘crazy’ values once in a while.

. The normal equations are
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Doing the usual € expansion (this time, only to the e accuracy) yields
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where
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The basic Normal approximation is
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Solving the two normal equation with our set of X values is again quite
easy with the help of ’fsolve’; the result is: & = 0.3247 and § = 1.932.



