
Difference Equations
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1 Basics
Suppose a sequence of numbers, say a0, a1, a2, a3, .... is defined by a certain
general relationship between, say, three consecutive values of the sequence, e.g.

2ai+2 + 3ai+1 − 5ai = 7i (1)

true for each nonnegative integer i.
An equation of this type is called a difference equation, and our main

aim of this article is to explain how to solve it (i.e. find a formula for computing
the individual terms of the sequence).
We will deal only with the simplest case of such equations, namely those

linear in all the ai’s; furthermore, we allow the ai’s to have only constant
coefficients (such as our above example - note that the ai-terms are usually
collected on the left hand side of the equation).
If the right hand side of the equation is zero, it is called homogeneous,

otherwise (as in our example) the equation is non-homogeneous. We will be
able to solve a non-homogeneous equation only when the right hand side is a
polynomial in i, further multiplied by a constant raised to the power of i, e.g.
(i2 − 4) · 2i. Note that (1) is of this type - the constant is simply equal to 1.

2 Homogeneous case - Introduction
Having an equation of the

2ai+2 + 5ai+1 − 3ai = 0 (2)

type, we attempt to solve it by assuming that the solution has the following
form (hoping that our guess will prove correct):

atriali = λi

where λ is a constant whose exact value remains to be established.
Substituting this trial solution into (2) yields

2λi+2 + 5λi+1 − 3λi = 0
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or, equivalently (dividing the previous equation by λi), the following so called
characteristic equation (its LHS is the corresponding characteristic
polynomial):

2λ2 + 5λ− 3 = 0
The last equation has clearly only two roots, namely λ1 =

1
2 and λ2 = −3.

This implies that each ai = (
1
2)

i and ai = (−3)i constitutes a different solution
to (2) - we will call them (stretching the usual terminology a bit) basic solutions.
One can show that the fully general solution of (2) can be built by taking

a linear combination of the two basic solutions, thus:

agenerali = A · (1
2
)i +B · (−3)i

where A and B are two arbitrary numbers.
To ’fix’ the values of A and B and construct a specific solution to (2), we

need to be given numerical values of exactly two members of the ai-sequence.
In the case of an equation with two basic solutions, there are two common
possibilities:

2.1 Initial conditions

is the name by which we refer to the situation when the first two members of the
sequence (usually a0 and a1) are given, e.g. a0 = −1 and a1 = 2. This clearly
leads to two ordinary linear equations for A and B, namely (in the case of the
previous example):

A+B = −1
A

2
− 3B = 2

which can be easily solved to yield: A = −27 and B = −57 .
The specific solution which meets not only (2) but also the two initial

conditions is then:

aspecifici = −2
7
·
µ
1

2

¶i
− 5
7
· (−3)i

based on which we can easily find the value of any ai, e.g. a10 = −27 ·
¡
1
2

¢10 −
5
7 · (−3)10 = −21 595 063512 .
Note that in this case (of given initial conditions), we can also find a10 (or

any other specific ai) by the usual recursive procedure, i.e.

a2 = −5
2
a1 +

3

2
a0 = −13

2

a3 = −5
2
a2 +

3

2
a1 =

77

4
...
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(no formula necessary).

As a second, more interesting example, let us try to find a formula for the
determinant of the following tri-diagonal matrix:

ai ≡ det



α β 0 0 . . . 0
β α β 0 . . . 0
0 β α β . . . 0

0 0 β α
. . .

...
...

...
...

. . .
. . . β

0 0 0 . . . β α


where i is the number of rows (and columns).
By expanding it along the first row, one gets:

ai = α · ai−1 − β2 · ai−2
with a1 = α and a2 = α2 − β2.
Clearly,

ai+2 − α · ai+1 + β2 · ai = 0
is an equivalent way of presenting the same set of equations.
The roots of the corresponding characteristic poynomial are

λ1 =
α+

p
α2 − 4β2
2

and

λ2 =
α−

p
α2 − 4β2
2

The general solution to (??) is thus

ai = A · λi1 +B · λi2
The initial conditions imply

A · λ1 +B · λ2 = α

A · λ21 +B · λ22 = α2 − β2

which yields

A =
λ1

λ1 − λ2
and B =

−λ2
λ1 − λ2

The final, specific solution is thus

ai =
λi+11 − λi+12

λ1 − λ2

which can be written in a more explicit form of

ai =
1

2i
·
[i/2]X
j=0

¡
i+1
2j+1

¢
αi−2j(α2 − 4β2)j (3)

where [i/2] implies the integer part of i/2.
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2.2 Boundary conditions

We will now return to solving (2), but this time the first and the ’last’ value of
the sequence are given, e.g. a0 = 97

3 and a10 =
629 857
32 .

Similarly to dealing with initial conditions, this leads to two ordinary linear
equations for A and B, namely

A+B =
97

3
A

210
+B · (−3)10 =

629 857

32

which yield A = 32 and B = 1
3 .

The corresponding specific solution then reads

aspecifici = 32 ·
µ
1

2

¶i
+
1

3
· (−3)i =

µ
1

2

¶i−5
− (−3)i−1

Note that in this case the recursive procedure would not work, and the ’formula’
solution is thus the only way to solve the problem.

3 Homogeneous case - Complications
A natural extension of our previous examples is to relate more than three con-
secutive values of the ai sequence, e.g.

ai+3 − 3ai+2 − ai+1 + 3ai = 0 (4)

It’s not to difficult to figure out that the corresponding characteristic equa-
tion is

λ3 − 3λ2 − λ+ 3 = 0

this time having three roots, namely λ1 = 3, λ2 = 1 and λ3 = −1.
The general solution to (4) is thus

ai = A · 3i +B + C · (−1)i

To find a specific solution, three distinct values of the ai sequence must be
given; if these are a0, a1 and a2, we can still call it an initial-value problem (and
have the option of solving it recursively), but there is no clear-cut version of
’boundary’ conditions.

In general, it is important to realize that there are several equivalent ways
of presenting (4), such as

ai − 3ai−1 − ai−2 + 3ai−3 = 0

(the only difference being that now one would say: true for i ≥ 3).

4



In this context, one should watch out for ’skipped’ indices, e.g.

ai − 3ai−1 + 2ai−3 = 0 (5)

whose characteristic polynomial is λ3 − 3λ2 + 2 (no λ term!) with roots of 1,
1 +
√
3 and 1−√3.

The general solution to (5) is thus

ai = A+B · (1 +
√
3)i + C · (1−

√
3)i (6)

3.1 Double and multiple roots

An obvious complication arises when two (or more) roots of the characteristic
polynomial are equal to each other, e.g.

ai+3 − 4ai+2 − 3ai+1 + 18ai = 0 (7)

whose characteristic polynomial has the following roots: −2, 3 and 3.
Clearly, (−2)i and 3i are still two basic solutions of this difference equation,

but where is the third?
One can easily verify that, in a case like this, multiplying 3i by i creates yet

another possible solution to (7) - check it out! The fully general solution is then
constructed as a linear combination of these:

ai = A · (−2)i +B · 3i + C · i · 3i (8)

Converting it to a specific solution for a given set of initial values, e.g. a0 = 2,
a1 = 0 and a2 = −1 is done in the usual way:

A+B = 2

−2A+ 3B + 3C = 0

4A+ 9B + 18C = −1
The corresponding solution is: A = 17

25 , B = 33
25 and C = −1315 , which leads to

aspec.i =
17

25
· (−2)i + 11

25
· 3i+1 − 13

5
· i · 3i−1

Similarly, in a case of a triple root (say, equal to −3), we would construct
the corresponding three basic solutions by first taking (−3)i, then multiplying
this by i, and finally multiplying it by i2. The general pattern should now be
obvious.
Thus, for example, if the characteristic polynomial has the following set of

roots: 2, 3, 3, −4, −4 and −4, the general solution is:
ai = A · 2i +B · 3i + C · i · 3i +D · (−4)i +E · i · (−4)i + F · i2 · (−4)i

Note that some textbooks, instead of multiplying a multiple root by i, i2, i3,
etc. use the following alternate selection: i, i(i−1), i(i−1)(i−2), ... The latter
approach has some conceptual and perhaps even computational advantages, but
here we prefer using the former. The two schemes are fully equivalent.
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3.2 Complex roots

Since this section deals with complex numbers, we need the i symbol to denote
the purely imaginary unit. We will thus have to switch from the old ai to using
an. Later on, we will return to our regular notation.
As we all know, roots of a polynomial can easily turn out to be complex

(coming in complex-conjugate pairs). Formally, our previous solution remains
correct, for example:

an+2 − 4an+1 + 13an = 0 (9)

has a characteristic polynomial with roots of 2+3i and 2+3i.We can still write

an = A · (2 + 3i)n +A∗ · (2− 3i)n

where A and A∗ are complex conjugates of each other (to yield a real answer),
but it is often more convenient to avoid complex numbers and use, instead of
(2+3i)n and (2−3i)n, their real and purely imaginary parts (quite legitimately,
as we can always replace any two basic solutions by their linear combinations).
This is achieved more easily by converting 2+3i to its polar representation,

thus:
2 + 3i ≡

√
13
£
cos(arctan 32) + i sin(arctan 32 )

¤
The real and purely imaginary parts of (2 + 3i)n are then, respectively:

13n/2 cos(n arctan 32)

and
13n/2 sin(n arctan 32)

The general solution to (9) can then be written (avoiding complex numbers)
thus:

an = 13
n/2

£
A · sin(n arctan 32 ) +B · cos(n arctan 32)

¤
Luckily, many practical situations usually manage to steer clear of the com-

plex case.
Double and multiple complex roots are dealt with in the standard manner

(multiplying the usual basic solution by powers of n). So is the construction of
a specific solution.

4 Non-homogeneous case
We now consider difference equations with a non-zero right hand side (i.e. hav-
ing at least one term not multiplied by an ai; such terms can appear on either
side of the equation, but we will always transfer them to the RHS).
In general, the RHS can be any expression involving i and a handful of

constant parameters, but we will explicitly treat only the case of the RHS having
the form of

P (i) · θi (10)
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where P (i) is a polynomial in i, and θ is a specific number.
One can show that a general solution to a difference equation with a RHS

(10) can be built as follows: Take the general solution to the corresponding
homogeneous equation, and add to it a so called particular solution to the
complete (non-homogeneous) equation. Note that the particular solution will
have no arbitrary constants (the old A, B, C, etc.) - the first part of the solution
takes care of these.
To find a particular solution is, for our particular RHS (10), rather easy (at

least in principle); all we need to know is that it will have the following form:

Q(i) · θi · im (11)

where Q(i) is a polynomial of the same degree as P (i), but with undetermined
(meaning: yet-to-be-determined) coefficients, and m is the multiplicity of θ
as a root of the (homogeneous) characteristic polynomial.
Typically, θ is not a root of the characteristic polynomial, which means that

m = 0 and the last factor of (11) disappears. But then, if θ happens to be a
simple root, m = 1; if it’s a double root, m = 2, etc.

4.1 Special case of θ = 1

In this case, the RHS is simply a polynomial in i. One has to realize that,
implicitly, it is still multiplied by 1i. Thus, to establish the value ofm, one has to
check whether 1 is a root of the characteristic polynomial (and its multiplicity).
As an example, let us solve Eq. 1. Its characteristic polynomial has the

following roots: −52 and 1. The RHS of (1) is a linear polynomial, which means
that θ = 1, whose multiplicity as a root of the characteristic polynomial is
m = 1. The form of the particular solution is then

apart.i = (q0 + q1i) · i (12)

Note that we need a complete linear polynomial (i.e. a polynomial with both
linear and constant coefficients), even though P (i) had only a linear term.
Also, we need to realize that q0 and q1 (unlike A and B) are not arbitrary

numbers; to find the actual particular solution, we must first substitute (12)
into (1) - this can be done efficiently by Maple - and then solve for the correct
values of q0 and q1 by matching the coefficients of all powers of i.
Substituting (12) into the LHS of (1) yields:

7q0 + 11q1 + 14q1i

To match this to the RHS of (1), namely to 7i, we need (matching linear terms):

14q1 = 7

which immediately yields q1 = 1
2 , and (matching absolute terms):

7q0 + 11q1 = 0
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which implies that q0 = −1114 .
The particular solution is thus

apart.i = −11i
14

+
i2

2

which leads to the following fully general solution of (1):

agen.i = A · (−52)i +B − 11i
14

+
i2

2

Note that only at this point we would be in a position to deal with either
initial or boundary conditions (a common mistake is to omit the particular
solution when finding A and B).
For example, given that a0 = 3 and a1 = 6, we get

A+B = 3

−5
2
A+B − 11

14
+
1

2
= 6

which yields A = −4649 and B = 193
49 , and the following specific solution:

aspec.i = −46
49
· (−52)i +

193

49
− 11i
14

+
i2

2

4.2 More examples

In this section we concentrate on building particular solutions only (extending
them to general solution is quite trivial).
Another frequent special case of (10) arises when the polynomial P (i) is just

a constant (of zero degree), e.g.

2ai+5 − 3ai+4 − 24ai+3 + 13ai+2 + 84ai+1 + 36ai = 5 · 3i (13)

To find the correct form of a particular solution, we only need to know the
multiplicity of θ = 3 as a root of the characteristic polynomial

2λ5 − 3λ4 − 24λ3 + 13λ2 + 84λ+ 36 (14)

This can be figured out without solving the corresponding equation! First,
we substitute 3 for λ in (14). Since we get zero, 3 is clearly a root. To find its
multiplicity, we repeatedly differentiate (14) with respect to λ, then make the
same substitution, till we reach a non-zero value. The order of the first non-zero
derivative yields the multiplicity of the root.
In the case of our example, the first derivative still evaluates to zero, but the

second one is equal to 350. This implies that the corresponding multiplicity m
is equal to 2. The particular solution will thus have the following form:

ai = q · 3i · i2 (15)
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where the correct value of q is yet to be found.
Substituting (15) into the LHS of (13), best done with the help of Maple,

yields
3150q · 3i

To make this equal to the RHS of (9), q = 5
3150 =

1
630 .

The particular solution is then

apart.i =
i2

630
· 3i

For our final example, we just replace the RHS of (13) by

3 + i2

(−2)i (16)

i.e. a quadratic polynomial, multiplied by θi, where θ = −12 .
First we need to know the multiplicity of −12 as a root of (14) - the char-

acteristic polynomial has not changed! The corresponding substitution yields 0
for the polynomial itself, and 441

8 for its first derivative. The corresponding m
is thus equal to 1.
The particular solution will have a form of

q0 + q1i+ q2i
2

(−2)i · i

When substituted into the LFS of (13), this yields (the amount of algebra is
formidable - Maple now becomes indispensable):µ−441q0 − 1105q1 + 723q2

16
− 882q1 + 315q2

16
· i− 1323q2

16
· i2
¶
· 1

(−2)i

We can make the last expression equal to (16) by making q2 = − 16
1323 ,

q1 =
315
882 · 16

1323 =
40
9261 and q0 =

48+1105q1−723q2
−441 = − 8408

64827 .
The particular solution thus reads:

apart.i =
1051
64827 i− 5

9261 i
2 + 2

1323 i
3

(−2)i−3

(we have cancelled out the factor of −8).

4.3 Superposition principle

Finally, when the RHS of a non-homegeneous equation is a sum of two or more
terms of type (10), it is easy to show that the corresponding particular solution
will be the corresponding sum (superposition) of the (two or more) individual
particular solutions, constructed separately for each term (ignoring the rest).
Thus, replacing the RHS of our previous example (yet one more time) by

3 + i2 − 5 · 2i (17)
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we fist have to realize that this does not have the form of (10), but can be
written as as sum of

3 + i2 (18)

and
−5 · 2i (19)

which, individually, we do know how to deal with.
The first of these is just a quadratic polynomial (implicitly, θ = 1), and we

can also readily verify that 1 is not a root of (14), implying that m = 0. The
first particular solution will thus have the form of

q0 + q1i+ q2i
2

This, substituted into the LHS of (13), yields:

108q2 · i2 + (108q1 + 72q2)i+ (108q0 + 36q1 − 78q2)

implying that q2 = 1
108 , q1 = − 72

1082 = − 1
162 and q0 =

3−36q1+78q2
108 = 71

1944 .
The corresponding particular solution is

a
part(1)
i =

71

1944
− i

162
+

i2

108

Similarly, to find a particular solution to match (19), we first have to find
the multiplicity of θ = 2 as a root of (14). Substituting 2 for λ again results in
a non-zero value, again implying that m = 0.
The form of the second particular solution is thus simply

q · 2i

This, substituted into the LHS of (13), results in

80q · 2i

yielding q = − 1
16 .

Thus,
a
part(2)
i = −2i−4

The particular solution which solves the whole equation is thus a superposi-
tion (sum) of the two, namely:

apart.i =
71

1944
− i

162
+

i2

108
− 2i−4

To build the fully general solution, we first need to find all roots of (14). We
already know that 3 is a double root and −12 a simple root; it is not difficult
to verify that −2 is also a double root - note that replacing 2i in (17) by (−2)i
would have made the previous example a lot more difficult!
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This implies that

agenerali = A·3i+B·i·3i+C ·(−12)i+D·(−2)i+E·i·(−2)i+
71

1944
− i

162
+

i2

108
−2i−4

Only at this point one could start constructing a specific solution, based on
five given values of ai. This would lead to a linear set of ordinary equations for
A, B, C, D and E (fairly routine). Hopefully, no explicit example is necessary.
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