
STIRLING’S FORMULA

Bernoulli polynomials are defined recursively in the following manner:
We start with

B1(y) ≡ y

Then, we introduce B2(y) by

B2(y) = 2

∫ y

0

B1(u)du+C

where C is chosen so that
∫ 1/2

−1/2

B2(y)dy = 0

yielding

B2(y) = y
2 −

1

12

Note that B2(y) is an even function of y, implying that (i) B2(−1
2) = B2(

1
2),

and (ii) it integrates to 0 both in the (−1
2 , 0) and the (0, 12) range.

The next polynomial is simply

B3(y) = 3

∫ y

0

B2(u)du = y
3 −

y

4

Note that (i) it is a odd function of y, and (ii) B3(−1
2) = B3(

1
2) = 0, due to the

second property of the B2(y) function.
This is followed by

B4(y) = 4

∫ y

0

B3(u)du+C = y
4 −

y2

2
+

7

240

again, an even function which integrates (individually, on each half of the −1
2

to 1
2 range) to zero, and

B5(y) = 5

∫ y

0

B4(u)du = y
5 −

5

6
y3 +

7

48
y

(an odd function equal to zero at −1
2 and 1

2).
In this manner, we can continue indefinitely. The main properties of the

resulting polynomials are

B′n(y) = n ·Bn−1(y)
B2k(−1

2) = B2k(
1
2) ≡ bk

B2k−1(−1
2) = B2k−1(

1
2) = 0

for every positive n and k (with the understanding that B0(y) ≡ 1, to meet the
first identity with n = 1). Note that, on the second line, we introduced a new
symbol bk for the corresponding Bernoulli number (one can easily evaluate these
to equal to 1

6 , −
1
30 ,

1
42 , −

1
30 ,

5
66 , .... for k = 1, 2, 3, 4, 5, ...).
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Exponential generating function of these is defined as

G(y, t) ≡
∞∑

n=1

Bn(y) · tn

n!
(1)

and can be obtained by first differentiating each side of (1) with respect to y,
getting

dG(y, t)

dy
=

∞∑

n=1

n ·Bn−1(y) · tn

n!
= t

∞∑

m=0

Bm(y) · tm

m!
= t ·G(y, t) + t

Solving this ODE yields

G(y, t) = c(t) · exp(t · y)− 1

Since integrating (1) over y from −1
2 to 1

2 returns zero (each Bn(y) integrates
to zero), the same must hold for the last solution, namely

c(t)

∫ 1/2

−1/2

exp(t · y)dy − 1 = c(t) ·
exp( t2)− exp(−

t
2)

t
− 1 = 0

Solving for c(t), the final formula for the EGF is thus

G(y, t) =
t · exp(t · y)

exp( t2)− exp(−
t
2)
− 1 (2)

Based on this, we get two important results, namely

1. By setting y = −1
2 we get

t · exp(− t
2)

exp( t2)− exp(−
t
2)
− 1 =

t

exp(t)− 1
− 1

which is the EGF of Bernoulli numbers (if we consider coefficients of only
the positive even powers of t).

2. Replacing y by 1
2 and t by 2i · u (i is the purely imaginary unit) on the

RHS of (??) and (1), we get

i · u+
∞∑

k=1

bk · (2i · u)2k

(2k)!
= i · u+

∞∑

k=1

(−1)kbk · (2u)2k

(2k)!
=

2i · u · exp(i · u)
exp(i · u)− exp(−i · u)

− 1 =
u (cosu+ i · sinu)

sinu
− 1

Solving for the infinite sum yields

∞∑

k=1

(−1)kbk · (2u)2k

(2k)!
= u · cotu− 1
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Bernoulli functions Technically, Bernoulli polynomials, denoted B̂n(x),
are defined on the (0, 1) interval, instead of our (−1

2 ,
1
2 ); the n

th of them is thus
(using a somehow unconventional notation):

B̂n(x) ≡ Bn(x− 1
2)

These can be converted into what we call Bernoulli functions (we will use
the same B̂n(x) notation for these) by extending them, periodically (meaning
B̂n(x) ≡ B̂n(x − 1) ) throughout the real axis. For example, B̂n(x) looks as
follows:

Euler-Maclaurin formula is, effectively, a ‘correction’ to the well known
trapezoidal rule, namely:

∫ �

m

f(x)dx �
�∑

j=m

f(j)−
f(m) + f(�)

2
−

∞∑

j=1

bj

(2j)!

(
f (2j−1)(�)− f (2j−1)(m)

)
(3)

where m and � are two integers, f (2j−1) indicates the corresponding deriva-
tive, and the upper limit of the last summation is rather symbolic (one would
normally use only a handful of terms). The proof is simple:

∫ �

m

f(x)dx =
�−1∑

j=m

∫ j+1

j

B̂′1(x) · f(x)dx =
�−1∑

j=m

B̂1(x) · f(x)
∣∣∣
j+1

x=j
−

�−1∑

j=m

∫ j+1

j

B̂1(x) · f ′(x)dx

=
�−1∑

j=m

f(j + 1) + f(j)

2
−
∫ �

m

B̂′2(x)

2
· f ′(x)dx

=
�∑

j=m

f(j)−
f(m) + f(�)

2
−
B̂2(x)

2
· f ′(x)

∣∣∣∣∣

�

x=m

+

∫ �

m

B̂2(x)

2
· f ′′(x)dx

=
�∑

j=m

f(j)−
f(m) + f(�)

2
− b1 ·

f ′(�)− f ′(m)
2

+

∫ �

m

B̂′3(x)

3!
· f ′′(x)dx
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The last term is equal to

−
∫ �

m

B̂3(x)

3!
· f ′′′(x)dx

= −
∫ �

m

B̂′4(x)

4!
· f ′′′(x)dx

= −
B̂4(x)

4!
· f ′′′(x)

∣∣∣∣∣

�

x=m

+

∫ �

m

B̂4(x)

4!
· f (4)(x)dx

= −b2 ·
f ′′′(�)− f ′′′(m)

4!
+

∫ �

m

B̂′5(x)

5!
· f (4)(x)dx

whose the last term equals

−
∫ �

m

B̂5(x)

5!
· f ′(5)(x)dx

= −
∫ �

m

B̂′6(x)

6!
· f (5)(x)dx

= −
B̂6(x)

6!
· f (5)(x)

∣∣∣∣∣

�

x=m

+

∫ �

m

B̂6(x)

6!
· f (6)(x)dx

= −b3 ·
f (5)(�)− f (5)(m)

6!
+

∫ �

m

B̂′7(x)

7!
· f (6)(x)dx

etc.
Note that, since B̂1(x) has a discontinuity at each integer, the corresponding

integration had to be broken down into continuous segments (no longer necessary
for the remaining Bernoulli functions, which are all continuous).

An important special case of (3) lets � tend to ∞ and assumes that the
corresponding limit of all f (2j−1)(�) derivatives (including f(�) itself) is 0. One
then gets

∫
∞

m

f(x)dx �
∞∑

j=m

f(j)−
f(m)

2
+

∞∑

j=1

bj

(2j)!
f (2j−1)(m)

Stirling’s formula: When f(x) = ln(x), m = 1, and � is replaced by more
common (in this context) n, (3) implies

n · lnn− n+ 1 � lnn!−
lnn

2
−

∞∑

j=1

bj

(2j)(2j − 1)

(
1

n2j−1
− 1
)

since the 2j−1th derivative of lnx is (2j−2)!x−2j+1. Actually, in this form, the
formula is meaningless because the last (infinite) summation is not convergent
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!! We must re-write it (rearranging its terms in the process) as

lnn! = n · lnn− n+
lnn

2
+

k∑

j=1

bj

(2j)(2j − 1)n2j−1
+ ck +Rn,k

where we have made the summation finite, added the corresponding error term
Rn,k, and replaced

1−
∞∑

j=1

bj

(2j)(2j − 1)

by ck. It is easy to see that, as n increases, ck +Rn,k will tend to a finite limit
which is independent of k and remains to be established. The best we can do in
terms of finding a good approximation for lnn! is to replace ck + Rn,k by this
limit, equal to

lim
n→∞

(
lnn!− n · lnn+ n−

lnn

2

)
(4)

as all terms of the j summation tend to zero.
To do this, we recall that

n! =

∫
∞

0

xn exp(−x)dx (5)

Expanding ln of the integrand in x at n yields

ln[xn exp(−x)] � ln[nn exp(−n)]−
(x− n)2

2n
+ ...

implying that

xn exp(−x) � nn exp(−n) · exp
(
− (x−n)2

2n

)

One can refine this approximation by further expanding the ratio of the LHS to
the RHS, getting

xn exp(−x) � nn exp(−n)·exp
(
−
(x− n)2

2n

)
·
(
1 +

(x− n)3

3n2
−
(x− n)4

4n3
+
(x− n)5

5n4
+ ...

)

but this will not affect the resulting n→∞ limit, as one can easily verify.
Using this formula,

lnn! � n lnn− n+ ln
[∫

∞

0

exp

(
−
(x− n)2

2n

)
dx

]

When series expanding the last term in n at infinity we get

ln
√
2nπ + ...

This clearly shows that (4) is equal to

ln
√
2π
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The final approximation is thus

lnn! � n · lnn− n+
ln(2πn)

2
+

k∑

j=1

bj

(2j)(2j − 1)n2j−1

= n · lnn− n+
ln(2πn)

2
+

1

12n
−

1

360n3
+

1

1260n5
−

1

1680n7
+

1

1188n9
+ ...

The following graph displays the log 10 of absolute error of this formula
(plotted against the value of k) when approximating ln 3!

The asymptotic nature of the approximation is quite obvious.
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