
Generating functions in combinatorics

c� Jan Vrbik

There are two basic issues in Combinatorics; here we give a brief introduction
to each.

1 Selecting r objects out of n

This is ambiguous unless we specify whether (or not)

• we can select the same object more than once (as many times as we like),

• the order in which we make the selection makes a difference.

Accordingly, we have to discuss four distinct cases.

1.1 Selecting r different objects, order irrelevant

Keeping n fixed, there is a simple way of generating all the answers (for 0 ≤ r ≤
n). How we can always do that should be obvious from the following example.

Example 1 When n = 5, expanding

(1 + a)(1 + b)(1 + c)(1 + d)(1 + e) = (1)

1 + a+ b+ c+ d+ e+ ab+ ac+ ad+ bc+ bd+ cd+ ae+ be+ ce+ de+ abc+ abd+ acd

+bcd+ abcd+ abe+ ace+ ade+ bce+ bde+ cde+ abce+ abde+ acde+ bcde+ abcde

indicates that there is only 1 way of selecting no object (or, selecting all five),
5 ways of selecting one object (or 4 objects - equivalent to deciding which object
not to select), and 10 ways of selecting two (or, equivalently three) objects. Not
that, since the order of selection does not matter, we may as well arrange the
objects alphabetically (in general, this prevents us from listing a selection, such
as abc, more than once, e.g. acb).

Note that when replacing each of the 5 distinct symbols by x, we get the
so called (ordinary) ���������� �	�
���� for the corresponding number of
selections (coefficients of xr), thus

(1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5

In general, we know (from Binomial Theorem) that the coefficient of xr in
the expansion of (1 + x)n is the binomial coefficient

�
n

r

�
=

n!

r!(n− r)!
(2)
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1.2 Repetition allowed, order irrelevant

This time, we have to replace each factor of the (1 + a) type in (1) by

1 + a+ a2 + a3 + ... =
1

1− a

Example 2 For n = 5 and r = 3 we get

1

(1− a)(1− b)(1− c)(1− d)(1− e)
≃ ...+

a3 + b3 + c3 + d3 + e3 + abc+ abd+ acd+ bcd+ abe+ ace+ ade+ bce+ bde+ cde

+ae2 + be2 + ce2 + de2 + ab2 + a2b+ ac2 + a2c+ ad2 + bc2 + a2d+ b2c+ bd2

+b2d+ cd2 + c2d+ a2e+ b2e+ c2e+ d2e+ ...

where ≃ indicates a multivariate Taylor expansion (in terms of a, b, c, d and e)
and, on the RHS, we list only the cubic terms (a2c means: select two as and
one c).

The corresponding generating function yields

1

(1− x)5
≃ 1 + 5x+ 15x2 + 35x3 + ...

implying that there are 5 ways of selecting one letter, 15 ways of selecting two
and 35 ways (listed above) to select three (not necessarily distinct) letters, etc.

This means that a general formula for the number of ways to select r ob-
jects out of n (in this particular manner) is the coefficient of xr in the Taylor
(generalized Binomial) expansion of (1− x)−n, namely

(−1)r
�
−n

r

�
=
(n+ r − 1)!

r!(n− 1)!
=

�
n+ r − 1

r

�
(3)

This is also the number of way of permuting r circles and n− 1 bars (each such
permutation yielding a unique selections of letters, e.g. | � | �� || corresponds
to a0b1c2d0e0, etc.).

1.3 Repetition allowed, order matters

This time we have to use ��
�������� generating functions (explained below).

Example 3 With n = 4 and r = 3 we now get

exp(a+ b+ c+ d) ≃ ...+

6abc+ 6abd+ 6acd+ 6bcd+ a3 + b3 + c3 + d3 + 3ab2

+3a2b+ 3ac2 + 3a2c+ 3ad2 + 3bc2 + 3a2d+ 3b2c+ 3bd2 + 3b2d+ 3cd2 + 3c2d

3!
+ ...

where each coefficient is now divided by the corresponding r! . Furthermore,
6abc is to be interpreted as: abc with all its

�
3

1,1,1

�
permutations, 3a2b as aab

with all its
�

3

2,1,0

�
permutations, etc. Note that we would be able to get explicitly

all such permutations if multiplication were non-commutative.
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Expanding

exp(4x) = 1 + 4 ·
x

1!
+ 42 ·

x2

2!
+ 43 ·

x3

3!
+ ..

tells us that there are 4 ways of doing this when selecting one letter (out of 4),
42 ways when selecting two, 43 when selecting three, etc.

The general formula for the number of possible ways to do this (creating
distinct r-letter ‘words’ based on n-letter ‘alphabet’) is

nr (4)

This can be derived more directly by considering how to fill in r ‘blanks’, each
with a choice of one of n letters.

1.4 Without duplication, order matters

The generating function is the same as in the first case, namely (1+x)n, except
now it has to be interpreted as exponential (rather than ordinary) GF.

Example 4 Going back to n = 5 results in

(1 + a)(1 + b)(1 + c)(1 + d)(1 + e) =

1 + a+ b+ c+ d+ e+
2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd+ 2ae+ 2be+ 2ce+ 2de

2!
+

6abc+ 6abd+ 6acd+ 6bcd+ 6abcd+ 6abe+ 6ace+ 6ade+ 6bce+
6bde+ 6cde+ 6abce+ 6abde+ 6acde+ 6bcde+ 6abcde

3!

where again, 2ab implies ab and ba, 6abc means abc with all its 3! permutations,
etc.

Correspondingly

(1 + x)5 ≃ 1 + 5x+ 20 ·
x2

2
+ 60 ·

x3

3!
+ 120 ·

x4

4!
+ 120 ·

x5

5!

implies that there are 5 such ‘words’ consisting one letter, 20 having two, 60
having three (distinct) letters, etc.

The general formula for the number of ways to do this is clearly
�
n

r

�
· r! =

n!

(n− r)!
(5)

Again, one can derive it easily by filling in r blanks by distinct letters; thus,
we have n choices to fill the first blank, n− 1 for the second one, n− 2 for the
next, etc. Since these follow the multiplication principle, we get

n(n− 1)(n− 2)...(n− r + 1)

which agrees with the previous formula.

Now, we turn to the second basic problem of Combinatorics, namely
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2 Partitioning m objects into k groups

This time, we need to specify whether

• the objects are distinct or identical,

• the group order is important or not,

• the order of objects (when distinct) within each group matters or not,

• we allow some groups to stay empty, or insist on each group containing at
least one element.

We start with the three (easier) cases of

2.1 Ordered groups

This time, we derive only formulas for the total number of such partitions (rather
then trying to generate them individually).

1. When the objects are indistinguishable, it is just a question of how many of
them go into each group (cell, block, bin, box, shelf etc. - different names
can be used here; same goes for ‘objects’, elements, letters, symbols, items,
people, etc.).

This is equivalent to selecting m letters from the alphabet of k letters
(each letter representing a cell) with repetition allowed (cells can always
have arbitrary number of objects) but order irrelevant (since both aab and
aba would result in putting two objects into Cell a and one object into
Cell b, i.e. in identical partitioning, etc.). Note that this may result in
one or more empty cells.

The answer is thus given by (3), with n being the number of groups (= k)
and r being the number of objects (=m), getting

�
m+ k − 1

m

�
=

�
m+ k − 1

k − 1

�
(6)

Should we not allowing empty cells, we can put one object into each cell
first (there is just one way of doing that) and then use the previous formula
for placing the remaining m− k objects into k cells, getting

�
m− 1

m− k

�
=

�
m− 1

k − 1

�

2. When the objects are distinct and their order (within each group) matters,
we first choose how many objects to put in each group - which can be done
using (6). Then we fill in the ‘blanks’, one by one, each time selecting a
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specific object. Since there are m! possible ways to do the latter, each
resulting in a different result (partition), the final answer is

m! ·

�
k +m− 1

m

�
=
(k +m− 1)!

(k − 1)!
(7)

Not allowing empty cells similarly results in

m! ·

�
m− 1

k − 1

�
(8)

3. When objects are distinct and their order within each group irrelevant,
all we have to do is to choose, for each object, the group to place it in
(having k choices every time). So, the answer is provided by (4) whose n
is now the number of groups (= k) and r is the number of objects (= m),
getting

km

To make sure that each cell contains at least one object is now more
complicated (for details, see the next section); the corresponding ��
�-
������� ���������� �	�
���� (with respect to m, for k fixed) is

�
exp(x)− 1

�k
=

k�

i=0

(−1)i
�
k

i

�
exp

�
(k − i) · x

�
(9)

where exp(x) − 1 is the EGF of the 0, 1, 1, 1... sequence (indicating that
a cell is non-empty). The coefficient of xm, multiplied by m!, yields the
final answer of

k�

i=0

(−1)i
�
k

i

�
(k − i)m (10)

This follows from the following, well-known Taylor expansion

exp(a · x) = 1 + a · x+ a2
x2

2
+ a3

x3

3!
+ a4

x4

4!
+ ...

2.2 Interchangeable (unordered) groups

This means that any rearrangement of groups (as long as their individual ‘con-
tents’ remain the same) is not seen as a new partition. It is thus not very
meaningful (even though still possible) to allow empty groups now; we therefore
impose an extra condition that each group must contain at least one object (to
allow empty groups would simply require using the ‘non-empty’ formula with 1,
2, ... and k groups, then adding the answers).

2.2.1 Distinct objects, their order (within each group) relevant

Since each such solution (partitioning) is repeated exactly k! times in (8), all
we need to do is to divide that expression by k!, getting

m!

k!
·

�
m− 1

k − 1

�
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2.2.2 Distinct objects, their order irrelevant

Similarly, each such solution is found k! times in (10), implying that the new
answer is �

m

k

�
def
=
1

k!

k�

i=0

(−1)i
�
k

i

�
(k − i)m

This expression is called the S������� �	���� �� ��� ��
��� ����. The
ordinary generating function of these (with respect to m, with k fixed) is

k�

i=1

x

1− i · x

(see the next section).

2.2.3 Identical objects

Now we are partitioning m identical objects into exactly k non-empty and ‘in-
terchangeable’ (meaning: their order is irrelevant) groups; this is clearly the
same as writing the integer m as a sum of exactly k positive integers. The
answer is given by the 
�������� �	�
����, usually denoted P (m,k), having
the following (ordinary) GF (with respect to m, k fixed)

k�

i=1

x

1− xi
(11)

(see the next section). There is no simple explicit formula for the coefficients of
the corresponding Taylor expansion.

3 Generating Functions

These are of two distinct types.

3.1 Ordinary GFs

The most general case: suppose there are several (typically many) choices to
select a specific ‘arrangement’ of ‘objects’ (what these actually are varies from
case to case). Let there also be a mapping from the set of these arrangements
into non-negative integers), and let gℓ be the number of arrangements which
map into a specific integer ℓ. The (ordinary) generating function of these gℓ’s
is defined as

G(x) =
∞�

ℓ=0

gℓx
ℓ (12)

In most cases, it turns out to be a finite product of several terms, found by
breaking the task of constructing an arrangement into several stages, each
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stage having its own set of ‘sub-arrangements’. These must also be mapped
into integers, to yield their individual contributions to ℓ (defined as the resulting
sum; ℓ thus needs to be ‘stage-additive’). Furthermore, each ‘total’ arrangement
must be achieved by exactly one specific sequence of sub-arrangements, implying
the usual �	���
��
����� 
���
�
��: the numbers of sub-arrangements (one
for each stage) need to be multiplied to yield the total number of arrangements.

The resulting OGF is then a simple product of the individual OGFs at each
stage.

Example 5 In how many ways can we select r different letters out of a col-
lection of n distinct letters when the resulting order is irrelevant.
In this example, selecting an ‘arrangement’ is deciding, for each of the n

letters, whether to keep it or not; each of these ‘stages’ contributes 0 or 1 (re-
spectively) to ℓ, defined as the number of letters kept. The OGF of the value
contributed to ℓ at each stage is thus 1 + x (the coefficient of each term repre-
sents the number of ways to make that choice, the exponent is the resulting ℓ
contribution), implying that

G(x) = (1 + x)n

The answer is the coefficient of xr in the expansion of this function, which
yields (2) - note that ℓ of the derivation has become r of the original question
(a dummy variable of the last expression). Also note that the final OGF thus
encapsulates, for a given n, all the answers (in terms of r).

Example 6 Find the OGF (with respect to r, keeping n fixed) for the number
of ways one can select r letters out of a collection of n distinct letters, with
unlimited duplication allowed and the resulting order irrelevant.
This time we have to decide, for each of our n letters, how many times to

include it; we can still do this in n stages. The contribution to ℓ (number of
letters selected) has the following one-stage OGF - there is just one way (the
coefficient) of duplicating a letter exactly i (the exponent of x) times, where i
must go from 0 to ∞ to cover any potential value of ℓ:

1 + x+ x2 + x3 + x4 + ... =
1

1− x

implying the overall OGF of
1

(1− x)n

Example 7 Find the OGF (with respect tom, keeping k fixed) for the number of
partitions of m distinct objects into k non-empty groups (their order irrelevant).
Note that we now let m to be the dummy variable (the old ℓ) of (12).
We assign each of the m objects to a group, one by one, by starting to fill

one group until we need another, then another, ..., until we have exactly k of
them; starting a new group is always seen as the beginning of a new stage. To
cover every possible value of m, we proceed as if this m was infinite; it is the
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task (and beauty) of the resulting OGF have the answer for any and each finite
m.

In Stage 1, we put Object 1 into a group, then keep on adding Object 2,
.... to the same group (adding any number of extra objects, including 0, is
possible); each time we do it, we have only one choice of an object. The first-
stage OGF is thus (coefficients represent the number of choices, powers specify
the corresponding contribution to m):

x+ x2 + x3 + ... =
x

1− x

In the second stage, we place the next available object to a new group, then keep
on adding the next few (potentially any number) objects to either one of the
already existing two groups; this time we have two choices for where to place
each of the additional objects, getting, for the corresponding Stage-2 OGF

x+ 2x2 + 22x3 + 23x4 + ... =
x

1− 2x

In Stage 3, we start yet another group, then keep on adding (any number of)
extra objects to one of the three existing groups (thus having 3 choices for each
extra object); the OGF of this stage is thus

x+ 3x2 + 32x3 + 33x4 + ... =
x

1− 3x

This is repeated until filling exactly k groups in this manner. Note that we have
thus covered all possibilities of creating k ‘unordered’ (if they were ordered,
we would have k choices, not one, for placing Object 1, etc. ) and non-empty
groups, using any (total) number of objects.
The overall OGF is thus

k�

i=1

x

1− i · x

The answer to our original question is the coefficient of xm in the Taylor ex-
pansion of this function.

Example 8 In how many ways can we write an integer m ≥ k as a sum of
exactly k positive integers (their order does not count).
This is equivalent to writing m as a sum of any number of positive integers,

the largest of which (there may be more than one such term) equal(s) to k. This
is based on a duality demonstrated by the following example:

9 = 5 + 2 + 2 = 3 + 3 + 1 + 1 + 1

where 9 is written as a sum of three terms, and also as a (‘dual’, in the one-
to-one sense) sum of terms having the largest value of 3. The equivalence of the
two can be seen (just count the dots, either horizontally or vertically) from the
following Y�	�� �������

• • • • •
• •
• •
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We construct the desired OGF using the second version of the problem (largest
term(s) equal to k) by multiplying OGFs of the individual k stages. In Stage
1 we select i number of 1’s (there is one way of doing it, contributing i, which
becomes the exponent of x, to the value of m) where i can go from 0 to ∞, in
Stage 2 we similarly select any number of 2’s (i of them now contribute 2i to
the total), etc. The corresponding Stage-s contribution to the final OGF is thus

1 + xs + x2s + x3s + ... =
1

1− xs

But note that the last stage is exceptional: we must select at least one k; its
contribution to OGF is thus

xk + x2k + x3k + ... =
xk

1− xk

Multiplying these (altogether k) one-stage contributions yields the overall OGF
of the original question, namely

xk

1− xk

k−1�

s=1

1

1− xs

which agrees with (11). The final answer requires Taylor-expanding this function
and taking the coefficient of xm.

Example 9 When rolling 15 dice, one gets a certain number of singlets (a
specific number of dots appearing only once), doublets (twice), triplets (three
times), etc., all the way to the same number of dots appearing 15 times; one
such possibility is getting 5 triplets; another is getting 2 singlets, 3 doublets, 2
triplets and 1 quadruplet, etc. How many such possibilities are there?
This of course is the same as writing 15 as a sum of numbers not bigger

than 6; to get the corresponding OGF, we need to modify the previous formula
accordingly (by removing the xk factor, since k now may also appear zero num-
ber of times). Expanding

6�

s=1

1

1− xs

yields

1+x+2x2+3x3+5x4+7x5+11x6+14x7+20x8+26x9+35x10+44x11+58x12+71x13+90x14+110x15+...

The answer is thus 110 (the generating function provides the answer for each
and any number of dice rolled).

3.2 Exponential GFs

Given a set of ℓ distinct elements, while f(ℓ) returns the number of specific
‘arrangements’ of these elements (called the set’s f -count), the ��
��������
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���������� �	�
���� of the f(0), f(1), f(2), .... sequence is defined as

F (x)
def
=

∞�

ℓ=0

f(ℓ)
xℓ

ℓ!

(similar to defining its OGF, but having an extra ℓ! in the denominator).

Example 10 When f returns the number of permutations of a set of ℓ distinct
elements (i.e. ℓ!), we get

F (x) =
∞�

ℓ=0

ℓ! ·
xℓ

ℓ!
=

∞�

ℓ=0

xℓ =
1

1− x
(13)

3.2.1 Main theorem

Starting with k such functions (let us call them hj , j = 1, 2, ...k) of a set’s size,
we now create a more complicated (but consistent with our original definition)

��
����� EGF by

F (x) =
∞�

ℓ=0




�

part

k�

j=1

ĥj



 xℓ

ℓ!
(14)

where the second summation is over all possible 
��������� of a set of ℓ dis-
tinct elements into exactly k ordered (between, not within) disjoint subsets of

arbitrary (including 0) size (as long as these add up to ℓ), and ĥj is hj , applied
to the jth subset.

One can then prove that another (simpler) way of constructing the same
EGF is by

F (x) =
k�

j=1



∞�

i=0

hj(i)
xi

i!

�

which is a product of k simple EGFs, each built using just one of the hj func-
tions.

In reverse, this enables us to interpret a product of two or more EGFs as a
single EGF of the (14) type.

3.2.2 Important special case

happens when

• all hj functions be the same (one can then drop their subscript and call
them h),

• where h is the indicator function of a specific condition imposed on the
size of each of the k subsets (h equals to 1 when the condition is met and
to 0 otherwise).
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This implies that the
�

part

k�

j=1

ĥj

part of (14) is the number of ordered partitions of the original set into exactly
k disjoint subsets, all of which must meet, individually, this condition. Based
on the main theorem, the corresponding EGF is equal to

F (x) =



∞�

i=0

h(i)
xi

i!

�k
def
= H(x)k (15)

Example 11 What is the number of distinct r-letter words based on n-letter
alphabet (repetition allowed, order matters).
This is equivalent (but not necessarily easier than the direct approach used

earlier) to partitioning a set of the first r positive integers into n distinct subsets
of any size (thus listing the positions of Letter 1, Letter 2,... Letter n in the
corresponding r-letter word - an empty subset implies not using that letter at
all). The EGF allowing each subset to be of any size (including 0) is

H(x) = 1 + x+
x2

2
+
x3

3!
+ ... = exp(x) (16)

The EGF which then answers our question (covering all possible values of r, for
a fixed n) is

F (x) = exp(x)n = exp(n · x)

Note that its coefficient of xr (when Taylor-expanded in x) multiplied by r!,
agrees with (4).

Example 12 Same question, but this time not allowing any duplication of let-
ters.
The only thing which changes in the solution is H(x), which must now re-

strict the size of each subset to at most one element, thus:

H(x) = 1 + x

The coefficient of xr in the expansion of

F (x) = (1 + x)n

further multiplied by r! yields (5).

Example 13 Find the number of different partitions of a set with m distinct
elements into and ordered collection of non-empty subsets.
Since h is equal to 0 for an empty set and to 1 otherwise, we now get

H(x) = x+
x2

2
+
x3

3
+
x4

4!
+ ... = exp(x)− 1 (17)

and
F (x) =

�
exp(x)− 1

�k

The answer is m! times the coefficient of xm in the Taylor expansion of this
function, leading to (10).
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3.2.3 Composition of two EGFs

Suppose we have an EGF (usually of the simple, indicator-function type, which
must exclude empty subsets) H(x) on a set of elements, and another EGF, say
G(x), whose ‘distinct objects’ are disjoint non-empty subsets of the original set.
It can be shown that the EGF for the number of distinct ways to combine the
two (whatever the specifics are) is the 
��
������� of G and H (be careful
with the order, this operation is non-commutative), namely

G (H(x))

We thus get the EGF for the number of ways ℓ elements of the original set can
be partitioned into k non-empty disjoint unordered (order is removed by the
k! denominator of G) subsets (all meeting Condition H), further multiplied by
g(k) then summed over all k from 0 to ∞.

Example 14 We are supposed to rank a specific number of distinct items (e.g.
in terms of quality), but we are allowed to put these into ‘equivalence classes’
whenever we feel that two or more of them are of the same quality. The question
is: in how many different ways can this be done when having ℓ items to rank.
Here, we need H(x) of (17) to ensure that subsets (the equivalence classes)

are non-empty; furthermore, G(x) must ‘count’ all possible permutations of such
subsets. The resulting EGF is thus the composition of (13) and (17), namely

1

1−
�
exp(x)− 1

� =
1

2− exp(x)

Expanding this function yields

1 + x+
3

2
x2 +

13

6
x3 +

25

8
x4 +

541

120
x5

and the first few answers, namely 1, 1, 3, 13, 75, 541, ... when having to rank
0, 1, 2, 3, 4, 5, ... items, respectively.

Example 15 Find the number of unordered partitions of a set of m distinct
objects into any number of non-empty subsets.
The same H ensures non-empty subsets; G is now also an ‘indicator’ EGF,

accepting any number of such subsets in the manner of (16). The resulting
EGF is thus

exp
�
exp(x)− 1

�

resulting in 1, 1, 2, 5, 15, 52, 203, ... when partitioning a set of 0, 1, 2, 3, 4, 5,
6,... objects (these are the so-called B��� �	�����).
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