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a b s t r a c t

We discuss robust designs for generalized linear models with protection for possible

departures from the usual model assumptions. Besides possible inaccuracy in an assumed

linear predictor, both problems of overdispersion and misspecification in link function

are addressed. For logistic and Poisson models, as examples, we incorporate the variance

function prescribed by a superior model similar to a generalized linear mixed model to

address overdispersion, and adopt a parameterized generalized family of link functions to

deal with the problem of link misspecification. The design criterion is the average mean

squared prediction error (AMSPE). The exact optimal design, which minimizes the AMSPE,

is also presented using examples on the toxicity of ethylene oxide to grain beetles, and on

Ames Salmonella Assay.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this article we discuss the construction of model-robust designs for generalized linear models (GLM). The literature

is replete with works on model-robust designs for linear models but there is little work done on model-robust designs for

GLMs. A possible reason for the dearth of work in this area is explained by the complexity of the design problem even when

the assumed model is exactly correct. Contributions to the optimal regression design literature with the notion that the

assumed GLM is exactly correct include those of Abdelbasit and Plackett (1983), Minkin (1987), Ford et al. (1992), Chaudhuri

and Mykland (1993), Burridge and Sebastiani (1994), Atkinson and Haines (1996), and most recently, of Li and Majumdar

(2008), but to name a few. The general approach to obtain a design is to optimize a certain real-valued function of the

information matrix of the model parameters. One main difficulty is the dependency of design criteria on unknown model

parameters. A traditional approach around this difficulty is to use best guesses for parameter values. This was termed as

locally optimal designs by Chernoff (1953). Authors such as Chaloner and Larntz (1989) and Dette and Wong (1996), have

used a Bayesian paradigm—assuming a prior distribution on the unknown parameters. There have also been minimax (or

maximin) proposals for robustification of the uncertainties in model parameters (see Sitter (1992), King and Wong (2000)

and Biedermann et al. (2004)).

In an article by Ford et al. (1989) on nonlinear designs, it was stated that when the assumed model is seriously in

doubt, designs based on such a model may be grossly inappropriate. Sinha and Wiens (2002) also employ notions of

robustness in the construction of sequential designs for the nonlinear model. Woods et al. (2006) provide a method for

finding robust D-optimal designs with awareness of uncertainty in link function or linear predictor for a GLM with several
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Table 1
Number of revertant colonies of salmonella (Yi).

Yi

Observations xi = 0a 10 33 100 333 1000

1 15 16 16 27 33 20

2 21 18 26 41 38 27

3 29 21 33 60 41 42

a Dose of quinoline (μmg/plate).

explanatory variables. In addition, Wiens and Xu (2008) discuss the construction of robust Q-optimal static designs for a

possibly misspecified nonlinear model. Adewale and Wiens (2009) recently consider robust Q-optimal designs for logistic

models with an eye on possible misspecification in the fixed effects specified through the linear predictor. The current

work goes beyond that of Wiens and Xu (2008) in that the designs obtained are exact so that they can be implemented

by practitioner without further computation and approximation. We go beyond Adewale and Wiens (2009) in treating the

design constructions for GLMs in general, including logistic and Poisson models as their special cases. The major advance is

our treatment of possible overdispersion and inadequately assumed link function.

There are three ways a GLM can be potentially misspecified. First, the covariates included in the systematic component

of the model, the linear predictor, may not reflect the influence of covariates correctly. This may be due to the use of a

wrongly specified functional form of the covariates in the model or an omission of essential covariates. The second source

of misspecification in a GLM is due to the variation in data that is not appropriately accounted for by the assumed model.

For instance, in logistic regression, extra-binomial variation is a situation whereby the nominal variance prescribed by the

binomial distribution does not correctly account for observed variability in the data. Overdispersion is the most common

form of unexpected variation, and it occurs when the data exhibit variability that exceeds that prescribed by the assumed

distribution. Underdispersion is the opposite, but it is not as common as overdispersion (see Dean, 1992). Third, the link

function might not be accurate. For example, the use of the logit link, in logistic model, which is the canonical link for the

binomial distribution when in fact the complementary log–log link or the probit link is more appropriate.

Our approach to robust design is to regard the true model as belonging to a broad class of models accommodating

variation beyond that which is prescribed by the assumedmodel, and several link functions other than the assumed one.We

compute the averagemean squared prediction error (AMSPE) as a composition of variance error as well as bias due tomodel

misspecification. Our robust designs are obtained by minimizing the AMSPE. The average is carried out over the parameter

space defining the class of the unknown true model. This notion of averaging the mean squared error of predictions over a

neighbourhood of the true model was introduced in Adewale and Wiens (2006) and dubbed ‘‘minave’’. We note that if the

prior information is given, themethodology developed in this paper can also be adopted to incorporate the prior distribution

of the parameters.

Example 1.1 (Overdispersion Illustrated). Margolin et al. (1981) compiled the data set from an Ames Salmonella reverse

mutagenicity assay. The number of revertant colonies was observed at six dose levels of quinoline. Three replicate plates

were used at each dose level. The data are presented in Table 1.

Fitting two Poisson models with mean responses below

Model I : μ1 (xi) = exp {β0 + β1xi} (1)

Model II : μ2 (xi) = exp {β0 + β1xi + β2 log (xi + 10)} (2)

produce the following estimates: β̂0 = 3.322, β̂1 = 0.0002 (deviance = 75.81, df = 16); and β̂0 = 2.173, β̂1 = −0.001,

β̂2 = 0.320 (deviance = 43.72, df = 15), respectively. The deviance and corresponding degrees of freedom for each of the

two fitted models indicate lack of fit.

A plot of the data with the fitted models superimposed is presented in Fig. 1, which shows that the model with the term

log (xi + 10) in the linear predictor is an improved fit over the first model. However, the data presented variability that

exceeds that prescribed by the Poisson distribution. There are many proposals in the literature for modelling overdispersed

data. In order to accommodate overdispersion in Margolin’s data, Lawless (1987) fitted Model III: the negative binomial

model Yi ∼ NB (μi, k) with mean response (2) and variance μ (xi)+ k−1μ2 (xi). The estimates obtained using the weighted

least squares —method ofmoments are β̂0 = 2.203, β̂1 = −0.001, β̂2 = 0.311. A likelihood ratio test rejects the hypothesis

H : k−1 = 0 and thus provides evidence of overdispersion in the data.

Example 1.2 (Link misspecification Illustrated). Table 2 presents Bliss’s (1935) data on the numbers of dead beetles after five

hours exposure to gaseous carbon disulphide at various concentrations. We fit the binomial model corresponding to a range

of values of λ for a generalized link function (defined by (10) in Section 2.2 of this paper). In particular, we fit the model

for a grid of λ values in [0, 2]. A plot of deviance versus λ values is presented in Fig. 2. Using the deviance as the model fit

criterion, λ = 0.1861 corresponds to the model with the minimum deviance. Fig. 3 shows that the model with the link

parameter λ = 0.1861 provides an improved fit to the data than the logistic model with λ = 1. The parameter estimates
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Fig. 1. Number of revertant colonies of salmonella against dose level with Model I and II superimposed.
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Fig. 2. Deviance versus λ for the beetle mortality data.

Table 2
Bliss’s Beetle mortality data.

Dose, xi (mgl−1) 49.06 52.99 56.91 60.84 64.76 68.69 72.61 76.54

Number of beetles, ni 59 60 62 56 63 59 62 60

Number killed, niyi 6 13 18 28 52 53 61 60

for the logistic model are β̂0 = −14.808 and β̂1 = 0.249 and the corresponding estimates for the model with λ = 0.1861

are β̂0 = −10.782 and β̂1 = 0.174.

In an investigation of designs for nonlinear models, Sinha and Wiens (2002) asserted that ‘‘Although the theoretical

response functions are very similar in shape, and possibly indistinguishable if noisy data must be relied upon, the

appropriate designs can be quite dissimilar’’. Similarly, since the link function determines the response function in a GLM,

the misspecification of the link function could have consequences on the resulting designs.

2. Statistical models

We consider the case of an experimenterwith a finite set S = {xi}Ni=1 of possible design pointswhose interest is to choose

n, not necessarily distinct, points at which to observe response Y . The virtue of choosing such a finite design space is stated
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Fig. 3. Proportion of dead beetles versus dose with logit link and λ = .1861-link superimposed.

in Fang and Wiens (2000). The experimenter makes ni ≥ 0 observations at xi such that
∑N

i=1 ni = n. The design problem is

to choose n1, . . . , nN in an optimal manner and with an eye on possible model misspecification.

In logistic regression, the experimenter intends to fit the model with mean response

μB (η) = exp (η)

1+ exp (η)
; (3)

and for a Poisson log linear model, one considers the mean count being

μP (η) = exp (η) .

Both are nonlinear functions of the linear predictor η = zT (x) β with z (x) as a vector of predictors.

In view of the possible model departures, as exemplified in Examples 1.1 and 1.2, the experimenter seeks protection

against possible misspecifications in the assumed model form. As highlighted in the introduction, the following are the

three kinds of departures from an assumed GLM that the experimenter is worried about:

M1. The true linear predictor is η = zT (x) β + f (x) where the function f (x) is some contamination function accounting

for additional effects of covariates.

M2. The mean–variance relationship in the assumed GLMmay not exactly describe the variability in data obtained.

M3. The true link function is different from the assumed link function.

The subject of designing for logistic models with possible M1 departure has been treated in Adewale and Wiens (2009).

They assumed that the contamination function f (x) belongs to a contamination neighbourhood:

F =
{

1

N

N∑
i=1

z (xi) f (xi) = 0,
1

N

N∑
i=1

f 2 (xi) ≤ τ 2, with τ 2 = O
(
n−1

)}
. (4)

It is noted that the first condition inF ensures identifiability of the linear predictor and the second condition ensures that the

bias engendered by themisspecified linear predictor remains bounded. The average (over the design space S) mean squared

error in predicting the mean response, μ (η) was adopted as the loss function. This loss function depends on the unknown

contamination function f (x). In order to eliminate this dependency of the loss function on the unknown contamination

function f (x), they used the average of the loss function over the contamination neighbourhood F as the design criterion.

In this paper, this criterion is also adopted.

2.1. Overdispersion model

Overdispersion is a very common phenomenon in data involving proportions but most of the attention it has received

in the literature has been in the context of data analysis. Modelling overdispersion has been considered by, among others,

Pierce and Sands (1975), Crowder (1978) and Williams (1982). However, this subject has received very scant attention in

the regression design literature. In order to construct robust designs that give protection for overdispersion we adopt a

mixedmodel which accommodates overdispersion by incorporating an additive random component to the linear predictor.
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In addition, this mixed model is also required to have the fitted model as a special case. Formally, the true but unknown

model belongs to a class of alternative models defined as follows:

E (Yi|vi) = μ (ηi) , ηi = zT (xi) β + φvi,

with E (vi) = 0, var (vi) = 1, and var
(
v2
i

)
<∞. (5)

2.1.1. Overdispersion in logistic model

For binary data, in logistic regression particularly, we have

YB
i |vi ∼ 1

ni

binomial
(
ni, μ

B (ηi)
)
.

So the true model has E
(
YB
i |vi

) = μB (ηi), var
(
YB
i |vi

) = E

(
YB
i
|vi
)(

1−E

(
YB
i
|vi
))

ni
. We have

d

[
μB(ηi)

]
dηi

∣∣∣∣
φ=0

= μB
(
zT (xi) β

) ×(
1− μB

(
zT (xi) β

))
. Let w

(
zT (xi) β

) = μB
(
zT (xi) β

) (
1− μB

(
zT (xi)β

))
. Then we have

d2
[
μB (ηi)

]
dη2

i

∣∣∣∣∣
φ=0

= w
(
zT (xi) β

) (
1− 2μB

(
zT (xi) β

))
.

We take the following Taylor’s expansion at φ = 0:

E
(
YB
i |vi

) = exp
(
zT (xi)β

)
1+ exp

(
zT (xi) β

) + d
[
μB (ηi)

]
dηi

∣∣∣∣∣
φ=0

φvi

+ 1

2

d2
[
μB (ηi)

]
dη2

i

∣∣∣∣∣
φ=0

φ2v2
i + o

(
φ2
)

= μB
(
zT (xi) β

)+ w
(
zT (xi) β

)
φvi

+ 1

2
w
(
zT (xi) β

) (
1− 2μB

(
zT (xi) β

))
φ2v2

i + o
(
φ2
)
.

Then, we have

var
(
YB
i |vi

) = 1

ni

⎧⎨
⎩

w
(
zT (xi) β

)+ [
1− 2μB

(
zT (xi) β

)]
w
(
zT (xi) β

)
φvi

+
{
1

2
w
(
zT (xi) β

) [
1− 2μB

(
zT (xi) β

)]2 − w2
(
zT (xi) β

)}
φ2v2

i

⎫⎬
⎭

+ o
(
φ2
)
.

Therefore,

E
{
var

(
YB
i |vi

)} = 1

ni

w
(
zT (xi) β

) [
1+

{
1

2

[
1− 2μB

(
zT (xi) β

)]2
−w

(
zT (xi) β

)
}

φ2

]

+ o
(
φ2
)
, and var

{
E
(
YB
i |vi

)} = w2
(
zT (xi) β

)
φ2 + o

(
φ2
)
.

Using the identities

E (Yi) = E {E (Yi|vi)} , and var (Yi) = var {E (Yi|vi)} + E {var (Yi|vi)} ,
the true mean response and true variance are given by

E
(
YB
i

) = μB
(
zT (xi) β

)+ O
(
φ2
)
, (6)

var
(
YB
i

) = 1

ni

w
(
zT (xi) β

) {
1+

(
1

2

[
1− 2μB

(
zT (xi) β

)]2
+ (ni − 1) w

(
zT (xi) β

)
)

φ2

}

+ o
(
φ2
)
. (7)
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2.1.2. Overdispersion in Poisson model

For Poisson data, Minkin (1993) consider overdispersion when constructing design. He accommodates overdispersion

using a multiplicative random effect. That is to take the true model as YP
i |t ∼ Poisson(tμP

i ) where the random variable t has

mean 1 and varianceφ2. Thus the unconditional distribution of YP
i has themean responseμP

i , and the varianceμP
i +φ2

(
μP

i

)2
.

In this paper we rather accommodate overdispersion by an additive random contamination to the linear predictor such that

the true model has the conditional distribution YP
i |vi ∼ Poisson(μP (ηi) = eηi ) in the form of (5). Thus, the true model has

conditional mean and variance as follows:

E
(
YP
i |vi

) = μP
i = e

zT(xi)β+φvi

= e
zT(xi)β + e

zT(xi)βφvi + 1

2
e
zT(xi)βφ2v2

i + o
(
φ2
)
,

var
(
YP
i |vi

) = e
zT(xi)β + e

zT(xi)βφvi + 1

2
e
zT(xi)βφ2v2

i + o
(
φ2
)
.

Therefore,

E
{
var

(
YP
i |vi

)} = e
zT(xi)β + 1

2
e
zT(xi)βφ2 + o

(
φ2
)
, and var

{
E
(
YP
i |vi

)} = e
2zT(xi)βφ2 + o

(
φ2
)
.

Hence, the true mean response and true variance for this model are given by

E
(
YP
i

) = e
zT(xi)β + O

(
φ2
)
, (8)

var
(
YP
i

) = e
zT(xi)β + e

zT(xi)β
(
1

2
+ e

zT(xi)β
)

φ2 + o
(
φ2
)
. (9)

In Model (5), the true linear predictor has two parts — the fixed part representing the effects of covariates and a random

part capturing overdispersion. We note that the overdispersion problems mainly contribute to the variance part of the

response, and the resulting mean responses above approximately remain the same. However, the following subsection will

show that the misspecified link function problems not only contribute to the variance part of the response but also cause

the nonignorable bias in the mean response.

2.2. True link model

2.2.1. Link function misspecification in logistic model

Ponce de Leon and Atkinson (1993) investigated designing optimal experiments for the choice of link function for a

binary data model. They assumed a framework where interest is in the estimation of the link function as well as the model

coefficients when the link function belongs to the same parameterized generalized link family of interest in this article.

Thus their approach fits into the context of classical approach to regression design in which the experimenter takes the

assumed model to be exact. The difference is that the link function is rather added as an extra-parameter to be estimated

from the data. Biedermann et al. (2004) introduced a robust approach in which the experimenter is considering a finite

set of plausible link functions with the uncertainties in the suitability of each of them quantified with known probabilities.

The probabilities reflect the preferences the experimenter attaches to each link function. The resulting robust criterion is a

weighted average of the respective criterion corresponding to each link function. We take a different approach here. Given

that the experimenter intends to fit the logistic model, binomial model with the logit link, we propose designs that protect

against the possibility of the imprecision in the logit link specified.

The framework for the robust design in this paper is that the true but unknown link function as well as the fitted logit

link belong to the generalized family of link functions

g
(
μB, λ

) = log

[{(
1

1− μB

)λ

− 1

}/
λ

]
, (λ ≥ 0) , (10)

parameterized by λ. The true link function corresponds to an unknown value of the link parameter that might be

different from that which corresponds to the logistic model. This generalized family of links encompasses the logit and

the complementary log–log links as special cases. The logit link corresponds to λ = 1 while the complementary log–log

corresponds to limλ→0.

In generalized linear modelling the link function connects the systematic component (the linear predictor) of the model

to the mean response via

η = g
(
μB, λ

)
,

where η is the linear predictor representing the effects of covariates in the model on a linear scale. The reasonable choice

of link functions is suggested by the distribution of the response. For example, g
(
μB, λ

)
is suggested as the logit function

when the response takes the logistic distribution function, and as the complementary log–log linkwhen it takes the extreme
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value distribution. We considered the following Taylor’s expansion of (10) about the parameter value, λ = 1 corresponding

to the logit link that the experimenter contemplates fitting. That is,

η = log

(
μB

1− μB

)
+ h (x; λ)

with μB given by (3) and

h (x; λ) = ∂g

∂λ

∣∣∣∣
λ=1

(λ− 1)+ o (λ− 1) . (11)

Thus the link misspecification problemmay be cast as a linear predictor misspecification problem. The true mean response

is given by (3) with the linear predictor given by

ηi = zT (xi) β + f (xi, λ) ,

where the contamination function is given by

f (x, λ) = −h (x, λ) . (12)

2.2.2. Link function misspecification in Poisson model

In designing for a Poisson model with possibly misspecified link function we can employ the same framework as it for

logistic regression where the true link function and the fitted canonical link belong to a generalized family of link functions.

Here consider the parameterized family of link functions defined by

g
(
μP , λ

) = {(
μP

)λ
, λ �= 0

logμP , λ = 0,

where λ is the link parameter. The log link corresponds to λ = 0. The strategy is to linearize this generalized link function

by expanding it in a Taylor series about a fixed value λ = 0 and taking only the linear term. We then approximate the true

linear predictor by

ηi = zT (xi) β + f (xi, λ) ,

with the contamination function f (x, λ) given by

f (x, λ) = − ∂g (x, λ)

∂λ

∣∣∣∣
λ=0

λ = −λ logμP . (13)

As discussed above, the link function misspecification can be treated as a linear predictor misspecification problem. This

agrees with the work of Pregibon (1980) on goodness of link tests for generalized linear models where a misspecified link

function is considered as an additive contamination in the linear predictor. On this, Pregibon (1980) commented that ‘‘The

fact that the difference in link functions appears on the right side of the link defining equation should not be disturbing-

indeed, this corresponds to the fact that the wrong link function is a systematic misspecification of the model’’. Therefore, a

M3 problem can be treated as a M1 problem.

The rest of this paper is arranged as follows: in Section 3.1, we provide our general results on the asymptotic bias

and asymptotic covariance matrix of the maximum likelihood estimate (MLE) of the model parameter vector, as well as

the asymptotic approximation of AMSPE for GLM models with possible M1, M2, and/or M3 departures. The asymptotics

for logistic and Poisson models are discussed in Sections 3.2 and 3.3. A modified simulated annealing algorithm used for

obtaining the resulting robust designs in this paper is discussed in Section 3.4. We present several examples and real-life

applications in Section 4 and concludewith a few remarks in Section 5. Derivations of all theorems in this article are provided

in an Appendix.

3. Loss function and algorithm

We consider a GLMmodel:

E (Yi|vi) = μ
(
ηT ,i

)
,

ηT ,i = zT (xi) β + f (xi, λ)+ φvi, with

E (vi) = 0, var (vi) = 1, and var
(
v2
i

)
<∞.

(14)

This model incorporates with all possible M1, M2, and M3 types of departures from fitted model:

E (Yi) = μ (ηi) , ηi = zT (xi) β. (15)
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Since the typical focus of the design for a generalized linear model is prediction, we use the normalized average mean

squared prediction error (AMSPE) L of the response prediction μ
(
η̂i

)
, with η̂i = zT (xi) β̂, as the design criterion,

L �
n

N

N∑
i=1

E

[{
μ
(
η̂i

)− μ
(
zT (xi) β + f (xi, λ)+ φvi

)}2]
. (16)

The response Y follows a distribution from the exponential family. The mean of this response depends on the unknown

parameters and the vector of explanatory variable, z (x), through the link functionη = zT (x)β.The variance of this response,
Var (Y ), depends only on this link function. Formally, the true but unknown model belongs to a class of alternative models

defined as follows:

Yi|xi ∼ Exponential Family, having density

d(yi) = {[yiθi − b (θi)] /a (ϕ)+ c (yi, ϕ)} , with (17)

E (Yi) = μ
(
ηT ,i

)
, ηT ,i = zT (xi) β + f (xi)+ φvi. (18)

But the fitted model is with (15).

The log-likelihood l, according to the possibly misspecified model is

l (β) =
N∑
i=1

li(θi, ϕ; Yi) =
N∑
i=1

log d (Yi; θi, ϕ)

=
N∑
i=1

{[Yiθi − b (θi)] /a (ϕ)+ c (Yi, ϕ)} .

We employed the chain rule to obtain the first derivative of the log-likelihood l,

∂ l (β)

∂β
=

N∑
i=1

∂ li

∂β
=

N∑
i=1

∂ li

∂θi

∂θi

dμi

∂μi

∂ηi

∂ηi

∂β
,

where
∂ li
∂θi
= [

Yi − b′ (θi)
]
/a (ϕ). Using μi = b′ (θi) and var (Yi) = a (ϕ) b′′ (θi) we have

∂ li

∂θi
= [Yi − μi] /a (ϕ) ,

∂μi

dθi
= b′′ (θi) = var (Yi) /a (ϕ) , and

∂ηi

∂β
= z (xi) since ηi = zT (xi) β.

Thus

∂ l (β)

∂β
=

N∑
i=1

(Yi − μi)

var (Yi)

∂μi

∂ηi

z (xi) ,

and

∂2l (β)

∂β∂βT
=

N∑
i=1

[
∂μi/∂ηi

var (Yi)
z (xi)

∂ {Yi − μi}
∂βT

+ (Yi − μi) z (xi)
∂

∂βT

{
∂μi/∂ηi

var (Yi)

}]
.

We have

∂ {Yi − μi}
∂βT

= −∂μi

∂ηi

zT (xi) ,

and for a canonical model (which the fitted model is)

θi = ηi, and
∂

∂βT

{
∂μi/∂ηi

var (Yi)

}
= 0.

Thus,

∂ l (β)

∂β
=

N∑
i=1

(Yi − μi)

a (ϕ)
z (xi) ,
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and−1 times the second derivative of second derivative of the possibly misspecified canonical model is

−∂2l (β)

∂β∂βT
=

N∑
i=1

(∂μi/∂ηi)
2

var (Yi)
z (xi) zT (xi)

=
N∑
i=1

∂μi/∂ηi

a (ϕ)
z (xi) zT (xi) .

3.1. General results

The preceding arguments cumulate into Theorem 1 which gives the expressions for the asymptotic bias and asymptotic

covariance of the maximum likelihood estimates of the model parameters with awareness of any possible M1, M2, and/or

M3 departure(s).

Theorem 1. Let γ and γT be the N × 1 vectors with elements μi = μ
(
zT (xi) β0

)
, and μT ,i = μ

(
zT (xi) β + f (xi, λ)+ φvi

)
respectively, where μi is the fitted mean response and μT ,i is the true mean response and let Z be the N × p matrix with rows

zT (xi). Let varT (Yi) be the true variance. Define

wi = ∂μi/∂ηi

a (ϕ)
, and wT ,i = varT (Yi)

a2 (ϕ)
.

Let P,W, andWT be the N × N diagonal matrices with diagonal elements ni/n, wi, and wT ,i respectively. Finally, define

b = ZTP
(
γT − γ

)
a (ϕ)

,

Hn = ZTPWZ,

H̃n = ZTPWTZ.

(19)

For any GLM model with a canonical link function, the asymptotic bias and asymptotic covariance matrix of the maximum

likelihood estimate β̂ of the model parameter vector β0 from the misspecified model are

bias

(
β̂
)
= E

(
β̂ − β0

)
= H−1

n b+ o
(
n−1/2

)
, (20)

cov
(√

n

(
β̂ − β0

))
= H−1

n H̃nH−1
n + o (1) , (21)

respectively.

This is a generalization, to generalized linear models and to all three possible departures, of Theorem 1 of Adewale and

Wiens (2009), which gives the asymptotic bias and asymptotic covariance matrix of themaximum likelihood estimate β̂ for

logistic model with possible M1 departure.

Theorem 2. For any GLM model (17) with a canonical link function, the AMSPE has the asymptotic approximation

L = L(P; λ, φ,β)+ o(1), where

L (P; λ, φ,β) = 1

N

{
tr

[
WZH−1

n H̃nH−1
n ZTW

]
+ n

∥∥W (
ZH−1

n b− f
)∥∥2

}
(22)

for f = (f (x1, λ) , . . . , f (xN , λ))T.

An approximation L to AMSPE is given in Theorem 2 and the construction of a design is to minimize quantity (22). The

robust designs for a GLMwith a possible M1 departure can be constructed by the same approach employed in Adewale and

Wiens (2009) using the result of Theorem 2 above. Therefore, in the rest of this paper wewill focus on finding robust designs

dealing with M2 and M3 types of departures.

3.2. Asymptotics for logistic models with possible M2 and/or M3 departure(s)

We consider a logisticmodel: (14)withμ (·) = exp(·)
1+exp(·) which incorporateswith any possibleM2,M3 types of departures

from fitted model (15). We keep the notations in (19) the same, then the elements involved in (19) have become to the
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following:

μi = exp
[
zT (xi) β0

]
1+ exp

[
zT (xi) β0

] , (23)

wi = μi (1− μi) = 1

4
sech

2

(
zT (xi)β0

2

)
, (24)

μT ,i = exp
(
ηT ,i

)
1+ exp

(
ηT ,i

) with ηT ,i = zT (xi) β0 + f (xi, λ) , and (25)

wT ,i = var
(
YB
i

)
.

According to (6) and (7), we have

E
(
YB
i

) ≈ μT ,i, and

var
(
YB
i

) ≈ 1

ni

μT ,i

(
1− μT ,i

) {
1+

(
1

2

[
1− 2μT ,i

]2
+ (ni − 1) μT ,i

(
1− μT ,i

)
)

φ2

}
. (26)

We define H̃
B

n = ZTPWB
TZ, whereWB

T be the N ×N diagonal matrices with diagonal elements var
(
YB
i

)
in (26). For fitting

a logistic version of Model (15), with consideration of possible M2, M3 departures, the asymptotic bias and asymptotic

covariance matrix of the maximum likelihood estimator β̂ of the logistic model parameter vector β0 from the misspecified

model can be obtained by Theorem 1 with H̃n = H̃
B

n, where μi, wi, μT ,i, and wT ,i are defined as (23), (25), (25) and (26)

respectively. According to Theorem 2, the AMSPE has an asymptotic approximation (22) with H̃n = H̃
B

n.

3.3. Asymptotics for Poisson models with possible M2 and/or M3 departure(s)

We consider a Poisson model: (14) with μ (·) = exp (·) which incorporates with any possible M2-3 types of departures

from fitted model (15). Again keeping the notations in (19) the same, the elements involved in (19) have become to the

following:

μi = exp
(
zT (xi) β0

)
, (27)

wi = dμi

dηi

= exp
(
zT (xi) β0

)
, (28)

μT ,i = exp
(
ηT ,i

)
, with ηT ,i = zT (xi) β0 + f (xi, λ) , and (29)

wT ,i = varT (Y
P
i ).

According to (8) and (9), we have

E
(
YP
i

) ≈ μT ,i, and

varT (Y
P
i ) ≈ μT ,i + μT ,i

(
1

2
+ μT ,i

)
φ2. (30)

We define H̃
P

n = ZTPWP
TZ, whereWP

T be the N ×N diagonal matrices with diagonal elements var
(
YP
i

)
in (30). For fitting

a Poisson version of Model (15), with awareness of possible M2 and M3 departures, the asymptotic bias and asymptotic

covariance matrix of the maximum likelihood estimator β̂ of the logistic model parameter vector β0 from the misspecified

model can be obtained by Theorem 1 with H̃n = H̃
P

n , where μi, wi, μT ,i, and wT ,i are defined as (27)–(30) respectively.

According to Theorem 2, the AMSPE has the asymptotic approximation (22) with H̃n = H̃
P

n .

3.4. Algorithm: Modified simulated annealing

In this subsection, we discuss the computation methods used in the exact design constructions based on the results

above.

The loss function (22) depends on the unknownmodel parameter vectorβ0, the overdispersion parameterφ, and the link

parameter λ. Our approach to dealing with this parameter dependency requires parameter spaces Θ , Φ , and Λ of plausible

values of β0, φ, and λ respectively. Letting Ω = [Θ × Φ ×Λ], the design criterion is then the average of the loss function

over the given joint parameter space Ω . The averaging was carried out over a uniformly scattered set of points obtained on
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Ω using number-theoretic method or quasi-Monte Carlo method (Fang andWang, 1994). Given the parameter space Ω , we

sort designs that minimize the average (over the space Ω) of the loss function:

Lave (P) = averΩL (P; λ, φ,β) , (31)

through the matrix P = diag (n1/n, . . . , nN/n). The minimization of (31) with respect to P is undertaken using a modifica-

tion of the simulated annealing algorithm. It suffices to note here that the averaging in (31) is implemented as an integral

part of the simulated annealing process — for every new design generated the value of loss L (P; λ, φ,β) is calculated for

every point (λ, φ,β) in this scattered set inΩ . The value ofLave (P) is the average ofL (P; λ, φ,β) over the scattered points

in the parameter space Ω . The resulting designs are termed minave designs.

We consider models with p regressors (z1(x), . . . , zp(x))
T where x ∈ [a, b]. The design space is the set S =

{
xi = a +

(b−a)(i−1)

N−1

}N

i=1
of equally spaced points in [a, b]. Given the desired number of observations (n) to be taken and the number of

points in the design space (N), we seek designs that minimize the loss function (31). Our approach gives the experimenter

the flexibility to request a symmetric design about the point (a+ b) /2 or an asymmetric design.

Simulated annealing is a direct search optimization algorithm which has been quite successful at finding the global

extremumof a function, possibly non-smooth, that hasmany local extrema. The simulated annealing algorithmhere seeks to

assign integers ni ≥ 0 to each of the design points xi in such a way that Lave is a minimum. The three steps of this algorithm

are detailed in Fang andWiens (2000). A modified simulated annealing algorithm is employed to search for optimal designs

in this paper. These modifications are:

If n < N , then the initial design is chosen to be the design assigning one observation to each of n randomly chosen

points. If n ≥ N , we randomly distribute n observations to all N points. If our interest is in symmetric designs we randomly

assign one observation to each of  n
2
� randomly chosen points in [a, (a+ b) /2) when n < N , and randomly distribute

 n
2
� observations to the N

2
� points in [a, (a+ b) /2) when n ≥ N . If n is odd then N has to be odd for symmetry, in this

case we assign the extra observation to the point
{
a+b

2

}
. A symmetric initial design is obtained by assigning the number of

observations for locations in [a, (a+ b) /2) to their corresponding mirror image about the point
{
a+b

2

}
. This completes the

first step of the simulated annealing algorithm.

The second step is to generate a new design. We used the perturbation scheme presented by Fang andWiens (2000). We

modify the third step as follows: Denote the maximum number of iterations by maxit and current iteration by iter. Accept

the new design with probability π , defined as

π =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ΔLave ≤ 0,
uniform (0.5, 0.9) if ΔLave ≥ 0 and iter < maxit/16,

uniform (0.25, 0.5) if ΔLave ≥ 0 andmaxit/16 ≤ iter < maxit/8,

uniform (0, 0.1) if ΔLave ≥ 0 andmaxit/8 ≤ iter < maxit* (2/3) ,
0 if ΔLave ≥ 0 andmaxit* (2/3) ≤ iter < maxit,

where ΔLave = Lave(New design chosen) − Lave(Initial design). Thus a favourable new design (ΔLave ≤ 0) is accepted

with certainty and an unfavourable new design is accepted according to a separate Bernoulli experiment with success

probability chosen such that initially such an unfavourable design is accepted with probability satisfying the inequality

0.5 < π < 0.9. This follows a suggestion fromBohachevsky et al. (1986), that the tuning parameter T in step 3 of the original

simulated annealing be chosen such that 0.5 < exp (−ΔLave/T ) < 0.9. The probability of acceptance of a detrimental new

design is progressively decreased to ensure that the process settles at a global minimum. In the implementations of the

original simulated annealing algorithm, Fang and Wiens (2000) decrease T by a factor of 0.9 after each 100 iterations and

Adewale and Wiens (2006) decrease T by a factor of 0.95 after every 20th iteration. In the implementations considered in

Section 4, we found that various choice of parameter space Ω requires different scheme for decreasing T . We thus adopted

this fairly generic scheme above which still imitates the characteristics of the original algorithm but obviates the demand to

seek a perfect T for different parameter spacesΩ . All computations in this paper were carried out usingMatlab; the relevant

code is available from the authors on request.

4. Examples and applications

4.1. Example 4.1

First, we suppose an experimenter has confidence in the adequacy of the logistic model and the specification of the linear

predictor for fixed effects butwants protection against overdispersion.We consider ηT ,i = β0+β1x+φvi. The design space is

taken to be equally spaced points

{
xi = −1+ 2(i−1)

N−1

}N=41

i=1
in [−1, 1] and the number of observations to be taken is n = 200.

We take the range of the model parameters to be β0 ∈ [0.05, 1.5], and β1 ∈ [2.5, 3.5], i.e. Θ = [0.05, 1.5]× [2.5, 3.5], and
construct minave designs for various ranges of the overdispersion parameter φ. The resulting design for the overdispersion

parameter space: Φ = [0, 0.005] is to place 46, 50, 66, and 38 of 200 observations at the points −0.80,−0.75, 0.10 and
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a b c d

Fig. 4. Minave designs when (a) Φ = [0, 0.005], (b) Φ = [0, 0.05], (c) Φ = [0, 0.25], and (d) Φ = [0, 0.5] with Θ = [5, 1.5]× [2.5, 3.5] and Λ = {1}.

0.15 respectively. This and other designs corresponding to various ranges of the overdispersion parameter are presented

in Fig. 4. The range, Θ = [0.5, 1.5] × [2.5, 3.5] of the model parameters was fixed so as to study the effect of increasing

width of the overdispersion parameter space on the resulting designs. The support of the designs broadens over the design

space with increasing overdispersion. Similar effects were observed when we considered other model parameter values. In

general, the designs protecting against overdispersion are similar to those protecting against systematic misspecification of

fixed effects, see Adewale and Wiens (2009). We observed a gradual spread of the design points such that the points that

are otherwise the design points for the non-robust design which assumes no misspecification are the foci of the spread of

the robust designs.

To evaluate these designs we define efficiency and robustness payoff as,

Efficiency =
(
averΘL (Pnon-robust; λ = 1, φ = 0, β)

averΘL (Probust; λ = 1, φ = 0, β)

)
× 100%,

Robustness payoff =
(
1− averΩL (Probust; λ, φ,β)

averΩL (Pnon-robust; λ, φ,β)

)
× 100%

where Pnon-robust is the design constructed on the assumption that the fitted model is correct (φ = 0, λ = 1) and Probust

is the robust design constructed by minimizing (31). The cost of the robustness of our designs is measured by the lost

efficiency: 1 − Efficiency. The payoff is the percentage reduction in loss due to the use of a robust design as opposed to

a non-robust design which assumes the fitted model to be exactly correct. The efficiencies for the four designs are 100%,

99.8%, 98.4% and 97.0% while the payoffs are 0%, 0.21%, 11.5% and 35.2%, respectively. Thus the cost of robustness increases

with the increasing width of the overdispersion parameter further away from zero which corresponds to no overdispersion.

However, robustness is inexpensive here, the highest cost being 3.0% at the widest range Φ = [0, 0.5] and a corresponding

payoff of 35.2% which is much higher than lost efficiency.

Nowwe fix the overdispersion parameter φ at zero and seek designs for four different ranges Λ of link parameter values

with the range of model parameters kept at Θ = [0.5, 1.5] × [2.5, 3.5] as above. In this case, f (xi, λ) is given by (12). For

all ranges of the link parameter considered the number of support points is two or three. These designs are presented in

Fig. 5. The robust designs protecting against misspecification are not characterized by a spreading of the support points over

the design space as is the case of robust designs protecting against overdispersion. Rather these designs have fewer support

points. The robustness is provided by redistribution and shifting of the location of these few design sites. The efficiencies of

these robust designs are 99.4%, 94.9%, 95.9% and 97.6% for the range of link parameters [0.75, 1] , [25, 1] , [0, 1], and [0, 2]
with payoffs of 0.48%, 4.3%, 3.97% and 5.47%.

4.2. Example 4.2: Application to Calandra Granaria data

Busvine (1938) presented a data set for the mortality of grain beetle (Calandra Granaria) after exposure to ethylene oxide

(C2H4O). A total of 290 grain beetles were exposed to 10 different levels of concentrations of C2H4O and the proportion

killed at each concentration after a 1 h period was recorded (Table 3). Using iterated reweighted least squares as discussed

in Williams (1982), we fitted the overdispersion model (5). The parameter estimates are φ̂ = 0.946, β̂0 = −3.835, and
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a b c d

Fig. 5. Minave designs when (a) Λ = [0.75, 1], (b) Λ = [0.25, 1], (c) Λ = [0, 1], and (d) Λ = [0, 2] with Θ = [0.5, 1.5]× [2.5, 3.5] and Φ = {0}.

Table 3
Toxicity of ethylene oxide to the Calandra Granaria.

Dose # of observations # dead

xi (log10 C2H4O mg/100 ml) ni niyi

0.394 30 23

0.391 30 30

0.362 31 29

0.322 30 22

0.314 26 23

0.260 27 7

0.225 31 12

0.199 30 17

0.167 31 10

0.033 24 0

β̂1 = 15.754. Using the range Θ = [−4,−2]× [8, 16] of parameter values, Φ = {0} and Λ = {1}we construct the design

minimizing (31). This is the model which assumes that there is no overdispersion nor link misspecification but still offers

some robustness by incorporating a range of model parameter values. In Table 4, we label this design the Regular Optimal

Design. The model-robust design that protects against overdispersion as well as link misspecification is constructed by

taking Θ = [−4,−2]× [8, 16] , Φ = [0.75, 1] and Λ = [0, 1]. The regular optimal design is a 4-point design with support

at dose levels.033, 0.167, 0.362, and 0.391. The model-robust design has support at all 10 dose levels in the design space.

For comparison, we present two other designs in Table 4 — the original design in the data for which there is no rationale

given and the design with equal number of observation at all dose levels which we labeled ‘‘naive’’ design, being the design

that a naive experimenter would consider. The results indicated that both the original design and the ‘‘naive’’ design are

preferable to the regular optimal design since they have good robustness payoff with small efficiency loss. The robustness

payoff is 61.6%, 62.2%, and 62.6% for the original design, the ‘‘naive’’ design and the model-robust design, respectively. The

model-robust design is superior of all four designs, it has the highest payoff at the least efficiency loss.

4.3. Example 4.3: Application to Ames Salmonella assay

We return to the design in the Ames Salmonella assay presented in Table 1 which has six dose levels and 3 replicates

observations at each dose level. There is no rationale given for this design. In this section we consider designing for this

assay when the interest is to take a total of 18 observations and the design space consists of 50 equally spaced points

between 0 and 1000μmg inclusive. As indicated in Example 1.1 that overdispersion appears in the data, we intend to fit the

Poisson model with mean response (2) but seeks protection against overdispersion using approximated variance structure

of ez
T(xi)β+φ2e2z

T(xi)β . The ranges of plausible parameter values are taken to be [2.0, 3.5], [−0.002, 0.001], and [0.30, 0.35]
for β0, β1 and β2, respectively. Note that these ranges of parameter values cover the estimates from the fit ofModels I , II and

III using the data in Table 1. The design protecting against overdispersion for the ranges ofΦ = [0.05, .1] , [0.25, 0.28] , and
[0.5, 1.0] of the overdispersion parameter are presented in Table 5. These designs also have few distinct support points. In

this Poisson example, we have found that the number of support points is not increasing with the increasing departure of
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Table 4
Comparing designs for the toxicity of ethylene oxide on Calandra Granaria.

Dose level Number of observations (Total: 290)

Original design ‘‘Naive’’ design Model-robust design Regular optimal design

0.033 24 29 38 5

0.167 31 29 32 132

0.199 30 29 29 –

0.225 31 29 26 –

0.260 27 29 23 –

0.314 26 29 25 –

0.322 30 29 25 –

0.362 31 29 29 65

0.391 30 29 31 88

0.394 30 29 32 –

Lost efficiency 7.3 6.9 4.5 0

Robustness payoff (%) 61.6 62.2 62.6 0

Table 5
Designs for a Poisson model with protection against overdispersion.

Φ Support points (Number of observations) Efficiency (%) Payoff (%)

{0} 0 (2), 306.12 (6), 326.53 (3), 1000 (7) 100 0

[0.05, 0.1] 0 (2), 306.12 (9), 1000 (7) 98.0 3.4

[0.25, 0.28] 0 (1), 285.71 (8), 1000 (9) 88.1 26.1

[.5, 1.0] 0 (1), 285.71 (8), 1000 (9) 88 25.6

the overdispersion parameter from the value corresponding to no overdispersion. Similar to the situation for logistic model,

the efficiency trade-off for robustness is inexpensive. At the widest range Φ = [0.5, 1], the corresponding payoff of 25.6%

is much higher than the highest cost being 12%.

5. Concluding remarks

The design criteria proposed in this paper provide viable alternatives to classical optimal design when there is

the possibility of model misspecification. The numerical examples presented show that our designs are robust against

misspecification of the link function as well as overdispersion in both logistic and Poisson models. Our findings in this

paper indicates the robust design that protects against overdispersion in the assumed logistic model is taking observations

in clusters around the sites that would have been the design points for a classical design while that for assumed Poisson

model is mostly reallocating observations on the similar sites that would have been the design points for a classical design.

Generally, we found that the usual recommendation from classically optimal design would be inadequate in the presence

of link misspecification and/or overdispersion. The numerical examples presented in Section 4, suggest that there is a

marked difference between the characteristics of designs protecting against overdispersion and those protecting against

misspecification of link functions despite the fact that the same approach has been used for their construction.

While there have beenmany proposals formodelling extra variation in a GLM, the approachwe adopted is very attractive

in that it accommodates both the random variation and the fixed effects on the same scale — somewhat akin to a generalized

linear mixed modelling approach. For instance, regarding modelling possible overdispersion in binary data, another viable

alternative that we consider is to specify the distribution of the true model as

Yi|vi ∼ 1

ni

binomial (ni, μ (ηi)) , ηi = zT (xi) β

E (vi) = μ (ηi) and var (vi) = φ2μ (ηi) (1− μ (ηi)) .

The mean response from this specification is exactly the approximate true mean response (6) used in this paper but the

variance is var (Yi) = 1

ni
w
(
zT (xi)β

) {
1+ (ni − 1) φ2

}
which is different from (7) given by the specification used in this

work. Another way to obtain the same truemean response and variance prescribed by this alternative specification is to use

a correlated binomial model:

Yi = 1

ni

ni∑
j=1

Yij, with

Yij ∼ Bernoulli (μ (ηi)) and

cov
(
Yij, Yik

) = φμ (ηi) (1− μ (ηi)) , j �= k.

An advantage that comes with the correlated binomial model is that it can accommodate underdispersion by allowing neg-

ative correlation between the Bernoulli trials. Underdispersion, however, is a rare phenomenon in practice compared to
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overdispersion. Designs protecting against this form of alternative specification when φ > 0 behave the same as our speci-

fication — a spread of the design points of the design space. Interestingly, when φ < 0 under this specification, the resulting

optimal design is similar to the classical optimal design recommendation — choosing a few distinct points to observe the

response.

We also note that the robust designs found in the paper are almost as efficient as the classical designs even when the

model assume is actually correct since for all cases of the examples presented in this article the largest loss of efficiency is

less than 12%. For most cases in the examples presented, the payoffs for the robust designs protecting against a relatively

large uncertainty ofmisspecification in either overdispersion, or bad choice of a link function, or two situations combined are

much large than their trade-offs in efficiency. One exception is that although the payoff of the robust design in Section 4.1

against link misspecification alone is still better than the loss of efficiency, but the gain is not as much as that for against

overdispersion. Further improvements might be obtained by using a second order Taylor’s expansion:

h (x; λ) = ∂g

∂λ

∣∣∣∣
λ=1

(λ− 1)+ ∂2g

∂λ2

∣∣∣∣
λ=1

(λ− 1)2 + o
(
[λ− 1]

2
)
,

instead of (11). However, we note that, in Section 4.2, the payoff for robust design protecting against M2 and M3 combined

departures, the payoffs are even more impressive than protecting any of M2 or M3 departure alone.

While we have adopted the averaging of the loss function over uniformly scattered points from the parameter space in

dealingwith dependency of design criterion on unknown parameter, other possibilities remain. A proper Bayesian paradigm

can be used which requires the specification of prior distribution on the parameters rather than the specification of a range

of parameter values. It is our opinion that it might be easier to elicit information about plausible values of parameters from

the experimenter than information leading to prior distribution assumptions. Another approach when an initial range of

parameter values are available is the minimax approach. That is, an approach that seeks the design corresponding to the

least loss for theworst possible parameter values in the specified range. Our experience is that the designswe presented here

behave very similar to the minimax design (see Adewale andWiens, 2006; Wiens and Xu, 2008). The approach we adopted

in this paper can also be applied to construct the design for protecting possible misspecification in the linear predictor so

that it is possible to unify our results for all three kinds of misspecification considered in GLMs.
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Appendix. Derivations

Proof of Theorem 1. First, we show that it is true without consideration of possible overdispersion, under conditions as

in Fahrmeir (1990): the maximum likelihood estimate β̂ exists and is consistent, and ∂ l
(
β̂
)

/∂β is op
(
n−1/2

)
. The log-

likelihood l, the score function and−1 times the second derivative according to the assumed model are

∂ l (β)

∂β
=

N∑
i=1

ni∑
j=1

(
yij − μi

)
var(yi)

z (xi)
∂μi

∂ηi

, −∂2l (β)

∂β∂βT
=

N∑
i=1

niwiz (xi) zT (xi) .

An expansion of ∂ l (β) /∂βj around β0 gives

∂ l (β)

∂βj

= ∂ l
(
β0

)
∂βj

+
∑
k

(
βk − β0,k

) ∂2l
(
β0

)
∂βj∂βk

+ 1

2

∑
k

∑
l

(
βk − β0,k

) (
βl − β0,l

) ∂3l
(
β∗
)

∂βj∂βk∂βl

,

where βj and β0,j are the jth terms of the vectors β and β0 respectively and β∗ is a point on the line segment connecting β

and β0. If we replace β by β̂ in this expansion, we obtain

√
n
∑
k

(
β̂k − β0,k

)[1

n

∂2l
(
β0

)
∂βj∂βk

+ 1

2n

∑
l

(
β̂l − β0,l

) ∂3l
(
β∗
)

∂βj∂βk∂βl

]
= − 1√

n

∂ l
(
β0

)
∂βj

.

For the distributions belongs to exponential family, according to Kredler (1986), the third derivatives
∂3 l(β∗)

∂βj∂βk∂βl
are bounded,

and using the consistency of β̂ , we have that[
1

n

∂2l
(
β0

)
∂βj∂βk

+ 1

2n

∑(
β̂l − β0,l

) ∂3l
(
β∗
)

∂βj∂βk∂βl

]
p−→−Hjk,
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where Hjk is the (j, k)th element of the matrixHn = − 1

n

∂2 l(β0)
∂β∂βT = ZTPWZ. Thus the limit distribution of

√
n

(
β̂ − β0

)
is that

of the solution of the equations

∑
Hjk

√
n

(
β̂k − β0,k

)
= 1√

n

∂ l
(
β0

)
∂βj

,

i.e. is the limit distribution of H−1
n

1√
n

∂ l(β0)
∂β

. Using the central limit theorem for independent not identically distributed

random variables we have that 1√
n

∂ l(β0)
∂β

has a multivariate normal limit distribution with asymptotic mean

1√
n

N∑
i=1

niE
[
yi − μi

(
β0

)]
z (xi) /a(ϕ) = √nb,

and asymptotic covariance matrix H̃n = ZTPWTZ. From this it follows that
√
n

(
β̂ − β0

)
is AN

(√
nH−1

n b,H−1
n H̃nH−1

n

)
, as

required. �

Proof of Theorem 2. It follows Theorem 1. The derivation from Theorem 1 to Theorem 2 is very similar to the proof of

Corollary 3.1 in Adewale and Wiens (2009). So we omit it. �
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