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Robust designs for misspecified exponential regression models
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SUMMARY

We consider the construction of designs for exponential regression. The response function is an only
approximately known function of a specified exponential function. As well, we allow for variance hetero-
geneity. We find minimax designs and corresponding optimal regression weights in the context of the
following problems: (1) for nonlinear least-squares (LS) estimation with homoscedasticity, determine a
design to minimize the maximum value of the integrated mean-squared error (IMSE), with the maximum
being evaluated for the possible departures from the response function; (2) for nonlinear LS estimation
with heteroscedasticity, determine a design to minimize the maximum value of IMSE, with the maximum
being evaluated over both types of departures; (3) for nonlinear weighted LS estimation, determine both
weights and a design to minimize the maximum IMSE; and (4) choose weights and design points to
minimize the maximum IMSE, subject to a side condition of unbiasedness. Solutions to (1)–(4) are given
in complete generality. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Exponential regression models are widely used in many areas, such as pharmacokinetics [1],
agricultural sciences [2], and life testing [3]. Melas [4] investigates the optimal design problem
for exponential regression under D-optimality. Recently, the D-efficient (with respect to the local
D-optimal design) designs for such model with a single covariate have been constructed by
Dette et al. [5]. Both studies use the minimax approach to address the problem of the resulting
designs’ dependency on the parameters being estimated. While minimax designs prevents the worst
case scenario within the parameter space, the Bayesian approach considers an average over the
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180 X. XU

parameter space. Fang and Wiens [6] discuss the Bayesian minimally supported D-optimal designs
for exponential regression models.

All these studies above assume that the response is described exactly by a particular exponential
regression model. In practice, the assumed model is likely to be only a reasonable approximation
to the true model for the response. This true model is generally not known. As indicated in [7],
it is risk to design a regression experiment, which assumes that the regression model is exactly
correct. By analyzing the relative importance of errors due to bias, and to variance, they find that
very small deviations from an assumed model can eliminate any supposed gain arising from the
use of a design, which minimizes variance alone. There is abundant literature on robust designs for
an approximately known linear regression model, to name a few, [8–12]. For nonlinear regression,
robust designs for a generalized version of linear regression model, which is an approximately
known monotonic function of a linear function, in both parameters and regressors, are discussed
in [13, 14].

In this paper, we study the construction of designs for regression responses to be an approximately
known exponential function in a complete general setting. The regression function considered in
the present paper does not necessarily approximate a known function of linear function in both
parameters and regressors, as required in [13, 14]. When one is interested in the best estimation of
the response function, the designs’ problems are to find the optimal prediction designs. Therefore,
Q-optimality is considered in this paper. Our designs are robust, in that we allow both for impre-
cision in the specification of the response, and for possible heteroscedasticity. We also adopt the
minimax approach to address the worst possible case among all possible model departures from
our assumptions.

(1) The experimenter takes n uncorrelated observations Yi =Y (xi ), with xi freely chosen from
a design space S. Our goal is to choose these design points from S in an optimal manner
in order to estimate E(Y |x) in S.

(2) We consider the exponential regression model:

E(Y |x)=�+�exp(kTz(x))+n−1/2 f (x) (1)

for p regressors z(x)=(z1(x), z2(x), . . . , z p(x))T, depending on a q-dimensional vector x of
independent variables. We assume that ‖z(x)‖ is bounded on S. The response contaminant
f represents uncertainty about the exact nature of the regression response and is unknown
and arbitrary, subject to certain restrictions. We estimate h=(�,�,kT)T but not f ; this

leads to possibly biased estimation Ŷ (x)= �̂+ �̂exp(k̂
T
z(x)) of E(Y |x). The factor n−1/2 is

necessary for a sensible asymptotic treatment (see [13]). We note that due to the existence
of � and �, the model (1) is no longer an approximation of a known function of linear
function in parameters.

(3) The observations Yi are possibly heteroscedastic, with Var{Y (xi )}=�2g(xi ) for a function
g satisfying conditions given below.

We estimate h by nonlinear least squares (LS), possibly weighted with weights w(x). Our loss
function is n times the integrated mean-squared error (IMSE) of Ŷ (x) in estimating E(Y |x). This
depends on the design measure �=n−1�n

i=1�xi as well as on w, f and g:

IMSE( f,g,w,�)=n
∫
S
E{[Ŷ (x)−E(Y |x)]2}dx
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We denote unweighted LS by w=1 and homogeneous variances by g=1. The following
problems are addressed:

(P1) For ordinary LS (OLS) estimation under homoscedasticity, determine designs to minimize
the maximum value, over f , of IMSE( f,1,1,�).

(P2) For OLS estimation under possible heteroscedasticity, determine designs to minimize the
maximum value, over f and g, of IMSE( f,g,1,�).

(P3) For weighted LS (WLS) estimation, determine designs and weights to minimize the
maximum value, over f and g, of IMSE( f,g,w,�).

(P4) Choose weights and design points to minimize max f,g IMSE( f,g,w,�), subject to a side
condition of unbiasedness.

The remainder of this paper is organized as follows. Some mathematical preliminaries are
detailed in Section 2. The maximization part of the minimax designs construction is provided in
Section 3. The designs for P1 are provided in Section 4. The designs and weights that constitute
solutions to P2 and P3 are given in Section 5 and those for P4 are given in Section 6. Computation
and discretization for these designs are presented in Section 7.

2. PRELIMINARIES AND NOTATION

We define the ‘target’ parameter h0=(�0,�0,k
T
0 )T to be the value, which gives the best agreement,

in the L2-sense, between �+�exp(kTz(x)) and E(Y |x):

h0=argmin
h

{∫
S
[�+�exp(kTz(x))−E(Y |x)]2 dx

}

According to (1),

fn(x)=
√
n[E(Y |x)−�−�exp(kTz(x))]

and we denote

z̃T(x)=−�zT(x)exp(kTz(x)), tT(x)=(1,exp(kTz(x)), z̃T(x))

Then, we have
∫
S t(x) fn(x)dx=0. We drop the subscript on f whenever it is possible.

We shall assume that fn = f is an unknown member of the class

F=
{
f

∣∣∣∣
∫
S
f 2(x)dx��2S<∞,

∫
S
t(x) f (x)dx=0

}
(2)

where �S is a positive constant. The second condition, which comprises p+2 integrals, is required
in order that h0 can be uniquely defined, and in fact can be derived through the definition.

The departure from homogeneity of variances is measured by g(x), which is assumed to be an
unknown member of the class

G=
{
g

∣∣∣∣
∫
S
g2(x)dx�

∫
S
dx<∞

}
(3)

Letting� := (
∫
S dx)

−1, the condition in (3) is equivalent to defining �2=supg{
∫
SVar

2[�(x)]�dx}1/2.
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182 X. XU

To ensure the nonsingularity of a number of relevant matrices, we assume that the regressors
and design space satisfy

(�) For each a �=0, the set {x∈ S :aTt(x)=0} has the Lebesgue measure zero.
We propose to estimate h0 using LS to fit E(Ŷ |x)=�0−�0 exp(k

T
0z(x))with nonnegative weights

w(x).
We make use of the following matrices and vectors:

AS =
∫
S
t(x)tT(x)dx, B=

∫
S
t(x)tT(x)w(x)�(dx)

b f,S =
∫
S
t(x) f (x)w(x)�(dx), D=

∫
S
t(x)tT(x)w2(x)g(x)�(dx)

It follows from (�) that AS is nonsingular, and that B is nonsingular as well when � is absolutely
continuous. The LS estimator of h0 is

ĥ=argmin
n∑

i=1
[Yi −�−�exp(kTz(xi ))]2w(xi )

and satisfies
∑n

i=1 /̇i (ĥ)=0 for

/̇i (h)=[Yi−�−�exp(kTz(xi ))]w(xi )t(xi )

In addition, the Hessian �̈(h) is given by

n∑
i=1
/̈i (h)=

n∑
i=1

[Yi −�−�exp(kTz(xi ))]w(xi )ṫ(xi )−
n∑

i=1
w(xi )t(xi )tT(xi )

The information matrix is

I(h0)= lim
n→∞E

(
−1

n
�̈(h0)

)
=B

since

E

{
1

n

n∑
i=1

[Yi −�−�exp(kTz(xi ))]w(xi )ṫ(xi )
}

=n−1/2 · 1
n

n∑
i=1

f (xi )w(xi )ṫ(xi )

is O(n−1/2) by virtue of our assumptions on f, and z.
By Taylor’s Theorem,

0=
n∑

i=1
/̇i (ĥ)=

n∑
i=1

{/̇i (h0)+/̈i (h̃)(ĥ−h0)}

where h̃ lies between ĥ and h0. Then,

√
n(ĥ−h0)=

(
−1

n

n∑
i=1
/̈i (h̃)

)−1( 1√
n

n∑
i=1
/̇i (h0)

)
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Note that n−1/2∑n
i=1 /̇i (h0) is asymptotically normal, with asymptotic mean b f,S and covariance

Cov

[
1√
n

n∑
i=1
/̇i (h0)

]
= 1

n

n∑
i=1

�2g(xi )t(xi ,h0)tT(xi ,h0)w2(xi )=�2D

As at [15] (Section 12.2), it follows that the asymptotic distribution of
√
n(ĥ−h0) is

√
n(ĥ−h0)∼ AN (B−1b f,S,�

2B−1DB−1)

Let h(h)=�−�exp(kTz(x)), and then by the delta method,

√
n([�̂− �̂exp(k̂

T
z(x))]−[�0−�0 exp(k

T
0z(x))])

=√
n(h(ĥ)−h(h0))∼ AN (tT(x)B−1b f,S,�

2tT(x)B−1DB−1t(x))

Under Q-optimality, the loss function IMSE splits into terms due to (squared) bias and variance:

IMSE( f,g,w,�) = n
∫
S
{[Ŷ (x)−E(Y |x)]2}dx

= n
∫
S
E

{(
(h(ĥ)−h(h0))− 1√

n
f (x)

)2
}

= IB( f,w,�)+IV(g,w,�)+
∫
S
f 2(x)dx

where the integrated-squared bias (IB) and the integrated variance (IV) are

IB( f,w,�)=
∫
S
{√nE[h(ĥ

T
)−h(hT0 )]}2 dx

and

IV(g,w,�)=n
∫
S
Var(Ŷ (x))dx=n

∫
S
Var(h(ĥ

T
))dx

Asymptotically,

IB( f,w,�) = bTf,SB
−1ASB−1b f,S

IV(g,w,�) = �2 tr(ASB−1DB−1)

We have defined � to be a discrete measure, �(xi )=n−1 at the design points xi (possibly
repeated). We now adopt the viewpoint of approximate design theory and allow � to be any
probability measure on S. As the class F is so broad, only absolutely continuous measures �
can have finite maximum loss, see Lemma 1 in [10] and the italic statement in [10] (p. 335) for
the rationale. The requirement of absolute continuity excludes exact, implementable designs, and
thus, approximations are necessary, see [16, 17] for various methods for implementing designs
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184 X. XU

with continuous measures. For example, a practical implementation for univariate x is to place the
n design points at the quantiles xi =�−1((i−1)/(n−1)), and it is also used in Section 7 of this
paper.

We note that one might then, in order to avoid the exclusion for discrete designs and without
loss of generality, require f to be bounded or continuous. According to the exploration in [14], the
discretized version of such optimal designs, among those being absolutely continuous, performs
well in terms of a small variance with a small bias when f is uniformly bounded. Therefore,
in this paper we still continue to focus on the design with continuous measure �, which can be
implemented by its discrete version, see Section 7 for the example.

Let k(x) be the density of � and define m(x)=k(x)w(x). Without loss of generality, we assume
that the mean weight is

∫
S w(x)�(dx)=1. Then, m(x) is also a density on S that satisfies∫

S

m(x)
w(x)

dx=1 (4)

and we have

B=
∫
S
t(x)tT(x)m(x)dx

b f,S =
∫
S
t(x) f (x)m(x)dx

D=
∫
S
t(x)tT(x)m(x)w(x)dx

From the definitions of B,b f,S , we note that IB( f,w,�) depends on (w,�) only through m and
IV(g,w,�) through m and w. Hence, we can optimize over m and w subject to (4) rather than
over k and w. In the following four sections, we exhibit solutions to P1–P4.

3. MAXIMIZATION OVER f ∈F AND g∈G

In this section we derive the maxima of IMSE for fixed functions m(x) and w(x). The minimizing
m and w then constitute the solutions to P1–P4. The maximum in Theorem 1 is obtained in a
manner similar to that used in Theorem 1 of [10], and hence its derivation is omitted.

Define positive semidefinite matrices

K=
∫
S
t(x)tT(x)m2(x)dx

HS =B−1ASB−1, G=K−BA−1
S B

and 	=�2/�2S , representing the relative importance of variance versus bias. We note that

G=
∫
S
[(m(x)I−BA−1

S )t(x)][(m(x)I−BA−1
S )t(x)]T dx (5)

hence, G is positive semidefinite. Let 
max(·) be the largest eigenvalue of a matrix. In this notation,
we have the following theorem.
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Theorem 1
The maximum squared bias is

sup
f ∈F

IB( f,m)=�2S
max(GHS)

The maximum is attained at

fm(x)=�St
T(x){m(x)I−A−1

S B}G−1/2a0

where a0 the eigenvector corresponding to 
max(GHS) and satisfies aT0a0=1.

From this result, we obtain Theorem 2 immediately and obtain Theorem 3 by applying the
Cauchy–Schwarz inequality to the IV part of IMSE( f,g,w,m). Theorem 2 gives the maximum
IMSE under homoscedasticity while Theorem 3 gives this quantity under heteroscedasticity.

Theorem 2
The maximum mean-squared error in problem P1 is

sup
f ∈F

IMSE( f,1,1,m)=�2S{1+
max(GHS)+	 tr(ASB−1)} (6)

attained at fm .

Theorem 3
Define lm(x)=[tT(x)HSt(x)]. Then:

(i) the maximum mean-squared error in problem P2 is

sup
f ∈F,g∈G

IMSE( f,g,1,m)=�2S

{
1+
max(GHS)+	�−1/2

[∫
S
{lm(x)m(x)}2 dx

]1/2}

attained at fm and

gm(x)∝ lm(x)m(x)

(ii) the maximum mean-squared error in problems P3–P4 is

sup
f ∈F,g∈G

IMSE( f,g,w,m)

=�2S

{
1+
max(GHS)+	�−1/2

[∫
S
{w(x)lm(x)m(x)}2 dx

]1/2}
(7)

attained at fm and

gm,w(x)∝w(x)lm(x)m(x)

The following theorem can be derived from Theorem 3(ii) by applying the Cauchy–Schwarz
inequality to the last term in (7), it gives the minimax weights for a fixed m(x).
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186 X. XU

Theorem 4
Define �m =∫S[lm(x)m2(x)]2/3 dx. For fixed m(x) the weights minimizing sup f ∈F,g∈G IMSE( f,g,
w,m) subject to (4) are given by

wm(x)=�m[l2m(x)m(x)]−1/3 I [m(x)>0]
Then minw{sup f ∈F,g∈G IMSE( f,g,w,m)}=�2S{1+
max(GHS)+	�−1/2�3/2m }.

4. OPTIMAL DESIGNS WITH HOMOSCEDASTICITY: SOLUTION TO P1

Problem P1 has become that of finding a density m∗(x), which minimizes (6). The solution is
given by Theorem 5, which reduces the problem to a 2(p+1)-dimensional numerical problem.

Theorem 5
The design density m∗(x) minimizing (6) for the OLS estimation under homoscedasticity is of the
form

m∗(x)=
[
tT(x)Pt(x)+�

tT(x)Qt(x)

]+

where (z)+ =max(z,0). The (p+2)×(p+2) symmetric matrices P,Q(�0) and a constant � satisfy∫
S m∗(x)dx=1 and minimize (6).

The proofs of this and the other two theorems in this section are similar to those of Theorems 1, 2
and 3 in [13], respectively, and thus are omitted.

Some special cases of the general exponential regression model considered in this paper have
their particular applications. Certainly, the results of this and other sections apply to all special
cases. Note that, in general h is a p+2-dimensional vector, so is t(x). For special cases, h may
be either a (p+1)×1 or a p×1 vector. For instance, when �=0,�=1, or �=−�=1, the vector
h becomes (�,kT)T, (�,kT)T, or k, respectively. The following presents four models commonly
used in crop growth analysis (see [18]), pharmacokinetics and other areas (see [5]). These models
serve as typical examples throughout this section and the sections hereafter. We consider that
the regression function assumed model is an approximation to the truth. However, all the results
derived from this paper are in complete generality and apply for all multiple covariate case as
well, see Example 2 for an example with two covariates.

Model 1:

E(Y |x)≈�+e−
x

with t(x)=(1,−xe−
x )T, where x ∈[0,1].
Model 2:

E(Y |x)≈�(1−e−
x )

with t(x)=(1−e−
x ,−�xe−
x )T, where x ∈[0,1].
Model 3:

E(Y |x)≈1−e−
x with 
>0

with t (x)= xe −
x , where x ∈[0,1].
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Model 4:

E(Y |x)≈�e−
x

with t(x)=(e−
x ,−�xe−
x )T, where x ∈[0,1].
Model 5: below is a general version of the above models,

E(Y |x)≈�+�e−
x

with t(x)=(1,e−
x ,−�xe−
x )T, where x ∈[0,1].
Example 1
For Model 1, by Theorem 5 the optimal design density has the form

m∗(x)=
[
a1+a2xe−
x +a3x2e−2
x

a4+a5xe−
x +a6x2e−2
x

]+
(8)

Example 2
Consider an approximate exponential regression model with two covariates: E(Y |x)≈e−
1x1−
2x2,

and the design space S=[0,1]×[0,1]. Applying Theorem 5, the resulting minimax design density
is in the form

m∗(x)=
[

(a1x
2
1 +a2x1x2+a3x

2
2)e

−2(
1x1+
2x2)+a4

(a5x
2
1 +a6x1x2+a7x

2
2)e

−2(
1x1+
2x2)

]+

Example 3
We consider Model 5 and apply Theorem 6. The resulting minimax design density is in the form

m∗(x)=
[
a1+a2e−
x +a3xe−
x +a4e−2
x +a5xe−2
x +a6x2e−2
x

b1+b2e−
x +b3xe−
x +b4e−2
x +b5xe−2
x +b6x2e−2
x

]+

5. OPTIMAL DESIGNS WITH HETEROSCEDASTICITY

The problems P2 and P3 have become the following:
(P2) Find a density m∗(x) that minimizes

�−2
S sup

f ∈F,g∈G
IMSE( f,g,1,m)=1+
max(KHS)+	�−1/2

[∫
S
{lm(x)m(x)}2 dx

]1/2
(9)

with 
max and lm(x) as defined in Theorems 1 and 3, respectively. Then, k∗(x)=m∗(x) is the
optimal design density for the OLS estimation.

(P3) Find a density m∗(x) that minimizes

�−2
S sup

f ∈F,g∈G
IMSE( f,g,wm,m)=1+
max(KHS)+	�−1/2

[∫
S
{lm(x)m2(x)}2/3 dx

]3/2
(10)
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Then the weights

w∗(x)=�m∗{l2m∗(x)m∗(x)}−1/3 I [m∗(x)>0] (11)

and the density

k∗(x)=�−1
m∗ [lm∗(x)m

2∗(x)]2/3 (12)

with �m∗ defined in Theorem 4 are optimal for the WLS estimation.

5.1. Minimax designs for OLS: solution to P2

The solution to P2 is provided by Theorem 6 below.

Theorem 6
The density m∗(x) minimizing (9) for the OLS estimation under heteroscedasticity is of the form

m∗(x)=
[

tT(x)Pt(x)+�

tT(x)Qt(x)+{tT(x)Ut(x)
}2
]+

(13)

The (p+2)×(p+2) symmetric matrices P,Q(�0),U(>0), and a constant � satisfy
∫
S m∗(x)dx=1,

and minimize (9).

Example 4
For Model 4, we apply Theorem 6. The resulting minimax design density is in the form

m∗(x)=
(

(a1+b1x+c1x2)e−2
x +d

(a2+b2x+c2x2)e−2
x +(a3+b3x+c3x2)2e−4
x

)+

5.2. Minimax designs for WLS: solution to P3

The solution to P3 is provided by Theorem 7.

Theorem 7
The minimizing m∗(x) in (10) for the WLS estimation is of the form

m∗(x)= [a(x)−b(x)]+
c(x)

(14)

where, for constant symmetric matrices P, Q(�0), U(>0) and a constant d we have

a(x)= tT(x)Pt(x)+d, c(x)= tT(x)Qt(x)

and where b satisfies the cubic equation

b3+ r3

c
b− r3a

c
=0
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with r(x)={tT(x)Ut(x)}2/3. Explicitly,

b(x)=r

⎡
⎣
{

a

2c
+
√( a

2c

)2+
( r

3c

)2}1/3

+
{

a

2c
−
√( a

2c

)2+
( r

3c

)2}1/3
⎤
⎦

The constants in a, b and c satisfy
∫
S m∗(x)dx=1 and minimize (10). Then (11) and (12) provide

the optimal regression weights and design density for the WLS estimation, respectively.

Example 5
For Model 2, by Theorem 7, the optimal minimax m∗(x)=k∗(x)w∗(x) for WLS has the form (14)
with

a(x) = a1(1−e−
x )2+a2xe
−
x (1−e−
x )+a3x

2e−2
x +d

c(x) = c1(1−e−
x )2+c2xe
−
x (1−e−
x )+c3x

2e−2
x

r(x) = [r1(1−e−
x )2+r2xe
−
x (1−e−
x )+r3x

2e−2
x ]2/3
The minimax design �∗ has density k∗(x) computed from (12). The minimax weights w∗(x) are
obtained from (11).

6. OPTIMAL UNBIASED DESIGNS: SOLUTION TO P4

We say that a design/weights pair (�,w) is unbiased if it satisfies IB( f,w,�)=0 for all f ∈F,
so that sup f ∈F IB( f,w,�)=0. The following theorem gives a necessary and sufficient condition
for unbiasedness.

Theorem 8
The pair (w,�) is unbiased if and only if m(x)≡�=1/

∫
S dx.

Proof of Theorem 8
For the sufficiency, m(x)≡� implies G=0. According to Theorem 1, sup f ∈F IB( f,w,�)=0.

For the necessity, sup f ∈F IB( f,w,�)=0 implies G=0. By (5), (m(x)I−BA−1
S )t(x)=0 almost

everywhere x∈ S. The rest part of the proof can be done using the same technique as that in the
proof of Theorem 2(b) in [11].

We can construct the optimal unbiased design m0(x) by forcing sup f ∈F IB( f,w,�)=0 through
the choice k=�/w, and then minimizing supg∈G IV(g,w,�) over w. From Theorem 4, the optimal
weight function is

w0(x)=��0[tT(x)A−1
S t(x)]−4/3

and the optimal unbiased design density is

k0(x)=�−1
0 [tT(x)A−1

S t(x)]4/3
with

�0=
∫
S
[tT(x)A−1

S t(x)]4/3 dx
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The minimax IMSE is

min
(w,�)

sup
f ∈F,g∈G

IMSE( f,g,w,m)=�2S+min
(w,�)

sup
g∈G

IV(g,wm,�)=�2S{1+	�−1/2�3/20 }

We summarize these results below.

Theorem 9
The density k0(x) of the optimal unbiased design measure �0 and optimal weights w0, which
minimize sup f ∈F,g∈G IMSE( f,g,w,�) subject to sup f ∈F IB( f,w,�)=0 are given by

k0(x)= [tT(x)A−1
S t(x)]2/3∫

S[tT(x)A−1
S t(x)]2/3 dx

and w0(x)=�/k0(x). Minimax IMSE is

sup
f ∈F,g∈G

IMSE( f,g,w0,�0)=�2S

{
1+	�−1/2

[∫
S
[tT(x)A−1

S t(x)]2/3 dx
]3/2}

(15)

attained at g0(x)=w
−1/2
0 (x).

This is an immediate result from Theorems 4 and 8.

Example 6
Consider Model 3. Note that the designs provided by Theorem 9 for this example depend only on

 but not on �. To deal with this issue, we search for ‘locally most robust’ designs as discussed
in [14]. We consider a neighbourhood �. By setting a start value 
(0) ∈�, we first construct
the design k0(x,


(0)) and weights �/k0(x,

(0)) provided by Theorem 9. We then find the least

favourable 
LF in �. From Theorem 3, we find that this is equivalent to maximizing

∫
S

{tT(x)A−1
S t(x)}2

k20(x,

(0))

dx = 3
2


(0)(1−e−2
)2

∫
S
e−4
x

(
1−e−4
(0)x/3

e−4
(0)x/3

)
dx

= 3
2


(0)(1−e−2
)2

(
e4(


(0)/3−
)−1
4(
(0)/3−
)

+ e−4
−1
4


)

over the occurrences of 
 in �. We then construct the unbiased optimal design for 
LF, and iterate
to convergence. With S=[0,1], for a simple demonstration of the procedure described above,
we start at 
(0) =0.75 and take �=[0.5,1]. The iteration converges to 
LF=0.5. The unbiased
minimax design density is

k0(x)=1.37e−(2/3)x

and the corresponding optimal weights are w0(x)=0.78e(2/3)x .
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7. COMPUTATION AND DISCRETIZATION

In this section, we first demonstrate the computation of numerical values of the constants in our
constructed design density using one typical example: optimal design for P1 with Model 1; then
we present the discretized version of these designs for implementation.

As indicated in Example 1, the optimal design density has the form of (8). Note that (8) is
over-parameterized—if one of a1–a6 is nonzero—then we can assume that it is unity. We let a4=1,
and choose a1,a2,a3,a5 and a6 such that (6) can be minimized subject to

∫
S m∗(x)dx=1.

The optimal design m∗ depends on 
, but not on �. To address this issue one may adopt a mixture
of minimax and local approaches (see [13]): (1) start at some 
1=
(0)

1 and find the corresponding

optimal design density: m(0)∗ (x); (2) maximize (6) with m=m(0)∗ over an interval containing 
(0)

to find the least favourable value of 
: 
(1); (3) iterate between minimizing over designs and
maximizing over 
 until attaining convergence, say to 
LF; and (4) finally, employ Theorem 5 to
construct the ‘locally most robust design’ density m∗(x;
LF).

We consider a region 
∈[0.5,1] as that in [5] and carry out the process described above for
several values of 	, each time starting at 
(0) =0.75. In each case we obtain 
LF=2, see Table I
for the numerical values of the constants for both locally optimal design density at 
=0.75 and
locally most robust design density when 
∈[0.5,1] and see Figure 1 for their plots.

Table I. Numerical values for Example 1.


(0) =0.75 
∈[0.5,1]
	 a1 a2 a3 a5 a6 a1 a2 a3 a5 a6 
LF

0.5 1.266 0.0113 −0.771 1.348 −2.030 1.206 1.646 22.065 2.014 23.541 0.5
1 1.628 0.0000142 −4.328 7.644 −0.189 1.988 0.0375 −4.188 7.628 −14.634 0.5
2 2.870 0.0627 −11.522 17.310 −40.568 2.716 0.0117 −5.237 14.675 −26.076 0.5

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

(a)

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0(b)

Figure 1. Optimal minimax design densities m∗(x;
) in Example 1: (a) locally most robust design densities
for 
=
LF in [0.5,1] and (b) locally robust design densities for 
=
(0) =0.75. Each plot uses three

values of 	 :	=0.5 (solid line), 	=1 (broken line), 	=5 (dotted line).
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Figure 2. Support points of the discretized locally most robust designs for Model 1 when 
LF and 	=5.

We discretize the optimal design � constructed above by placing mass n−1 at each of the design
points: �−1((i−1)/(n−1)). For n=5,10,20 and 	=1, the support points of the discretized locally
most robust designs are shown in Figure 2.

We have provided the methods of constructing optimally robust designs for general exponential
regression under consideration of model uncertainties in both response function and variance
component. As 	 increases, the designs should have more emphasis on variance minimization and
less on protection from bias. As we would expect, the experimenter should then place relatively
more design points closer to the boundary of the design space. As 	 decreases, the designs should
have more emphasis on protection from bias and less on variance reduction; hence, is more
uniform.
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