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In this paper we present the construction of robust designs for a possibly misspecified gener-
alized linear regressionmodel when the data are censored. Theminimax designs and unbiased
designs are found for maximum likelihood estimation in the context of both prediction and
extrapolation problems. This paper extends preceding work of robust designs for complete
data by incorporating censoring and maximum likelihood estimation. It also broadens former
work of robust designs for censored data from others by considering both nonlinearity and
much more arbitrary uncertainty in the fitted regression response and by dropping all restric-
tions on the structure of the regressors. Solutions are derived by a nonsmooth optimization
technique analytically and given in full generality. A typical example in accelerated life testing
is also demonstrated. We also investigate implementation schemes which are utilized to ap-
proximate a robust design having a density. Some exact designs are obtained using an optimal
implementation scheme.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We investigate the construction of designs for both prediction and extrapolation of a regression response incorporating
censored data. Such designs are of interest in problems of life testing where there are two commonly used testing-time saving
plans: censoring and acceleration. In this article, we will address both.

Generally speaking, tests yielding complete data take too long to run especially for those products having long life-spans. To
save time, the testing results can be analyzed before all units fail. The data then consist of lifetime information on unfailed units,
so-called censored data. Another purpose of censoring is that one can analyze the most recent test data while the test is still
running.

When life testing runs at the stress levels within the range that the product would be normally used, the goal is prediction,
namely the estimation of themean response throughout the region of interest. For accelerated life testing (ALT), inwhich products
are tested at higher than normal usage stress levels, the goal is extrapolation. For an extrapolation problem, if one is interested
in estimating the mean response at a particular normal usage stress level which is lower than testing stress levels, we call it a
one-point extrapolation problem; if one's interest falls into estimating that at certain range of normal usage stress levels, we call
it a general extrapolation problem.

There is considerable literature regarding robust regression designs for a possibly misspecified linear response when obser-
vations are complete. For prediction problems, robust designs have been studied by Box and Draper (1959), Huber (1975), and
Wiens (1992, 1998). For extrapolation problems, robust designs were investigated by Draper and Herzberg (1973), Huber (1975),
Lawless (1984), Spruill (1984), Fang and Wiens (1999), and Wiens and Xu (2008a, b).
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For nonlinear regression problems without the consideration of model uncertainty, Atkinson and Haines (1996) and Ford
et al. (1989) presented various static and sequential designs; for those considering robustness, Sinha andWiens (2002) provided
the construction of sequential designs which were robust against model uncertainty, and Wiens and Xu (2008a, b) discussed the
construction of static designs which were robust against possibly misspecification in nonlinear models.

Recentwork on robust designswith censored data in ALT are reported by Chaloner and Larntz (1992), Pascual andMontepiedra
(2002, 2003), andmost recently by Pascual (2006), and Zhang andMeeker (2006) who also provide a review on both Bayesian and
non-Bayesian designs for ALT. These studies emphasize the robustness against misspecification on either the unknown model
parameters or the underlying distribution and assume that the “true” model belongs to, or is distributed, with a known prior,
onto a set of several known candidates. Ginebra and Sen (1998) investigated optimal designs, which are robust against possibly
misspecified parameter values on which the optimal designs depend. The explicit designs obtained in those works are mostly
under straight line or quadratic regression.

This present work focuses on the robustness against possible misspecification in regression functions that describe the
behavior of mean responses in relation to the explanatory variables. Such misspecification generates a bias in the estimation of
the mean response. We assume that the “true” model involves an unknown member of a certain contamination class but may
not be the assumed one. This work broadens the previous work of robust designs with censoring from others by considering
both nonlinearity and much more arbitrary uncertainty in the fitted regression response and by dropping all restrictions on the
structure of regressors. It also extends previous work on robust designs for such model settings for complete data in Wiens and
Xu (2008a, b) by incorporating censoring and maximum likelihood estimation.

The regression model considered in this study is similar to those in Wiens and Xu (2008a), however, the data investigated
here are censored. To illustrate this treatment, the following outline is presented.

We consider a singly censored design with a specified censoring time for each stress level. The underlying distribution is
assumed to be normal. For the lifetime, the underlying distribution is usually considered to be normal after the observations
are transformed. For example, suppose some product's lifetime is possibly a lognormal distribution. In such case, we take the
logarithmof all observations and censoring times, then carry out the regressionmethod on the data after such transformations. Let
Y be the random variable, for instance, (transformed) lifetime of the product or material, � be the (correspondingly transformed)
censoring time which is constant for a fixed stress level, and let x represent the stress level and be a q-dimensional vector
belonging to a bounded design space S.

We consider

Y(xi) = E(Y|xi) + �i,

with design points x1, x2, . . . ,xn freely chosen from S, where the �i's are uncorrelated and identically distributed with a normal
distribution and a common variance �2. In this paper, we mainly address the construction of optimal robust design for ho-
moscedasticity. We note that the analytic form for the optimal robust design with respect to heteroscedasticity, i.e. �2 = �2(x),
can also be foundwith very similar derivations to that for thehomoscedasticity case.However, this form involvesmore coefficients
to be determined by the last step of numerical loss minimization procedure. See Remark 1 in Section 3.1.

We assume that themean response is regarded as being an only approximately known function of unknown parameters, and a
linear function of a given p×1 regressor vector zT(x), depending on q-dimentional vector x of explanatory variables, x1, x2, . . . , xq:

E(Y|x) ≈ h(zT(x)h0).

The function h is strictly monotonic with a bounded second derivative. We assume ‖zT(x)‖ is bounded on S. The “correct” vector
h0 of regression parameters may be defined by

h0 = arg min
t

∫
S
[E(Y|x) − h(zT(x)t)]2 dx.

Then after introducing fn(x) = √
n[E(Y|x) − h(zT(x)h0)], we obtain

E(Y|x) = h(zT(x)h0) + n−1/2fn(x). (1)

Whenever it is clear from the context, we drop the subscript n on fn. The contaminant f is unknown but relatively “small”.
Such misspecification may be generated by a transformation of the data for the purpose of enhancing normality. It may also be
“viewed as arising from imprecision in the specification of h, or it can arise from amisspecified linear term and a two-term Taylor
expansion” as discussed in Wiens and Xu (2008b).

We let z̃(x) = (dh/d�|h=h0 )z(x) with � = zT(x)h. By the definition of h0, we have

∫
S
z̃T(x)f (x) dx = 0. (2)

To ensure that h0 is well-defined, we need both (2) and
∫
S z̃(x)z̃

T(x) dx being nonsingular which holds from Assumption (A) in

Section 2. Let ĥ be the maximum likelihood estimator (MLE) of h0 obtained from the censored data. We define the loss functions
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for the following cases:

(1) For prediction problems, where we attempt to estimate the mean response E(Y|x) on the entire design space S, let

I1 = n
∫
S
E[h(zT(x)ĥ) − E(Y|x)]2 dx.

(2) For extrapolation problems, we take

I2 = n
∫
T
E[h(zT(x)ĥ) − E(Y|x)]2� (dx),

where �{x0} = 1 in the case of one-point extrapolation when we estimate E(Y|x0), at x0 /∈ S, by Ŷ(x0) = h(zT(x0)ĥ); and � is
a Lebesgue measure in the case of general extrapolation with extrapolation region T assuming �(T) >0, and T ∩ S=�, where
we intend to extrapolate E(Y|x) to the entire region T.

These loss functions depend on the design measure � = n−1∑n
i=1 I(x = xi), where I is the indicator function, as well as on f .

The following problems will be addressed in this paper sequentially:

P1: Determine designs to minimize the maximum value of I1 over f.
P2: Determine designs to minimize the maximum value of I2 over f for one-point extrapolation.
P3: Determine designs to minimize the maximum value of I2 over f for general extrapolation.

P4, P5, and P6: Determine unbiased designs in the context of prediction, one-point extrapolation, and general extrapolation,
respectively.

We assume that the contaminant f involved in P1–P6 varies within certain specified contamination classes.
The rest of this paper is arranged as follows: Some mathematical preliminaries and notation are detailed in Section 2; the

designs for P1–P3 are presented in Section 3; the designs for P4–P6 are delineated in Section 4; the computation of the resulting
designs has been demonstrated using a typical ALT example in Section 5; in Section 6, the implementation schemes are discussed
and some implementable designs are obtained. A list of the symbols used and derivations of all theorems in this article are
provided in the appendixes.

2. Preliminaries and notation

For any observation y(x) at stress level x, we define an indicator function, c = c(y|x) in terms of the censoring time �(x) by
letting it be 1 when an failure occurs and 0 when observation is censored, i.e.

c(y|x) =
{
1 when y(x)��(x),
0 when y(x) > �(x).

Let� and	 be the standard normal density and cumulative distribution function, respectively. Under the fitted regressionmodel
E(Y|x) = h(zT(x)h), the log likelihood of the ith individual observation (yi, ci) at stress level xi is

li = ci

⎧⎪⎨
⎪⎩− ln(�) − 1

2
ln (2
) − 1

2

⎛
⎝yi − h

(
zT(xi)h

)
�

⎞
⎠
2⎫⎪⎬
⎪⎭+ (1 − ci)

⎧⎨
⎩ln

⎡
⎣1 − 	

⎛
⎝�(xi) − h

(
zT(xi)h

)
�

⎞
⎠
⎤
⎦
⎫⎬
⎭ .

Denote the standardizedobservationandcensoring timeat a specified stress levelxbyw(x) and �(x), i.e.w(x)=(y(x)−h(zT(x)h0))/�
and �(x) = (�(x) − h(zT(x)h0))/�. Then we have

�li
�h

∣∣∣∣
h=h0

= z̃T(xi)
�

{
ciwi + (1 − ci)

�(�i)
1 − 	(�i)

}
,

and

�2li
�h�hT

∣∣∣∣∣
h=h0

= − z̃(xi)z̃T(xi)
�2

{
ci + (1 − ci)

[(
�(�i)

1 − 	(�i)

)2
− �i�(�i)

1 − 	(�i)

]}
,

where �i =�(xi), ci =c(xi) andwi =w(xi). Both expressions above involve two random variables: ci and ciwi. The following derives
the expectations of, variances of, and covariance between these two variables based on the “true” model.
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We notice that ci and wi have the following distributions:

ci ∼ bin(1, Pi) with Pi = P(ci = 1),

wi ∼ N
(
f (xi)√
n�

, 1
)
.

and

ciwi =
{
wi when wi��i,
0 when wi > �i.

According to (1), we obtain

E(ci) = 	(�i) − �(�i)
f (xi)√
n�

+ o
(
f (xi)√

n

)
,

E(ciwi) = − �(�i) + [	(�i) − �i�(�i)]
f (xi)√
n�

+ o
(
f (xi)√

n

)
,

Var(ci) = 	(�i) − 	2(�i) + �(�i)[2	(�i) − 1]
f (xi)√
n�

+ o
(
f (xi)√

n

)
,

Var(ciwi) = [	(�i) − �i�(�i) − �2(�i)] + �(�i)[2	(�i) − 2�i�(�i) − �2i + 2]
f (xi)√
n�

+ o
(
f (xi)√

n

)
,

Cov(ci, ciwi) = − �(�i)[1 − 	(�i)] − {�2(�i) + [1 − 	(�i)][�i�(�i) − 	(�i)]} f (xi)√
n�

+ o
(
f (xi)√

n

)
.

Hence,

E

(
�li
�h

∣∣∣∣
h=h0

)
= a(�i)

f (xi)z̃T(xi)√
n�2

+ o
(
f (xi)√

n

)
,

E

⎛
⎝− �2li

�h�hT

∣∣∣∣∣
h=h0

⎞
⎠= z̃(xi)z̃T(xi)

�2

⎧⎨
⎩a(�i) +

⎛
⎝b(�i) + a(�i)

[(
d2h
d�2

)(
dh
d�

)−2
]
h=h0

⎞
⎠ f (xi)√

n�

⎫⎬
⎭+ o

(
f (xi)√

n

)
,

and

Cov

(
�li
�h

∣∣∣∣
h=h0

)
= z̃(xi)z̃T(xi)

�2

{
a(�i) +

[
2�(�i) − �2i �(�i) + �3(�i)

{1 − 	(�i)}2

]
f (xi)√
n�

}
+ o

(
f (xi)√

n

)
,

where a(�) = 	(�) − ��(�) + �2(�)/(1 − 	(�)) and b(�) = �3(�)/({1 − 	(�)}2) − ��2(�)/(1 − 	(�)) − �(�). We note that a(�) is a
function of x,h0, and �, but the dependency on x,h0, and � is only through �. For readability, we use a�(x) when we emphasize
its dependence on x with

a�(x) = 	

(
�(x) − h(zT(x)h0)

�

)
+ �2((�(x) − h(zT(x)h0))/�)

1 − 	((�(x) − h(zT(x)h0))/�)
− �(x) − h(zT(x)h0)

�
�

(
�(x) − h(zT(x)h0)

�

)
.

To avoid trivialities and to make sure the nonsingularity of a number of relevant matrices, we assume that the design space S
and extrapolation space T satisfy

(A) For each vector v�0, the set {x ∈ S ∪ T : vTz̃(x) = 0} has Lebesgue measure zero.
We assume∫

S
f2(x) dx��2S <∞ (3)

for a positive constant �S, and also define the following matrices and vectors:

AS = ∫
S z̃(x)z̃

T(x) dx, A0 = z̃(x0)z̃T(x0),
AT = ∫

T z̃(x)z̃
T(x) dx, B = ∫

S a(x)z̃(x)z̃
T(x)�(dx),

HS = B−1ASB
−1, H0 = B−1A0B−1,

HT = B−1ATB−1, bf ,S = ∫
S a(x)z̃(x)f (x)�(dx),

bf ,T = ∫
T z̃(x)f (x) dx.

It follows from (A) thatAS,AT are nonsingular and thatB is also nonsingularwhenever�does not placemass on sets of Lebesgue
measure zero. This requirement turns out to be necessary since � has to be absolutely continuous due to (3) as discussed later in
this section.
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By virtue of our assumption on f, z and h and the definition of B and bf ,S, we obtain the following results. The asymptotic
information matrix of h0 is

I(h0) = lim
n−→∞

1
n
E

⎛
⎝−

n∑
i=1

�2li
�h�hT

∣∣∣∣∣
h=h0

⎞
⎠

= 1
�2

∫
S
a(x)z̃(x)z̃T(x)�(dx)

= 1
�2

B.

The asymptotic expectation of the score function evaluated at h0 is

b̃f (h0) = 1√
n

lim
n−→∞

1
n
E

⎛
⎝√

n
n∑

i=1

�li
�h

∣∣∣∣
h=h0

⎞
⎠

= 1√
n�2

∫
S
a(x)z̃(x)f (x)�(dx)

= 1√
n�2

bf ,S.

And the asymptotic variance–covariance matrix of the score function evaluated at h0 is

C(h0) = lim
n−→∞

1
n

n∑
i=1

Cov

(
�li
�h

∣∣∣∣
h=h0

)

= 1
�2

∫
S
a(x)z̃(x)z̃T(x)�(dx)

= 1
�2

B.

Since the maximum likelihood estimate ̂ is a root of the score function which can be expanded around 0 as

1
n

⎛
⎝ n∑
i=1

�li
�h

∣∣∣∣
h=h0

⎞
⎠+ 1

n

⎛
⎝−

n∑
i=1

�2li
�h�hT

∣∣∣∣∣
h=h0

⎞
⎠ (ĥ− h0) + O((ĥ− h0)T(ĥ− h0)),

we have

ĥ− h0 ≈ 1
n

⎛
⎝ n∑
i=1

�li
�h

∣∣∣∣
h=h0

⎞
⎠ I−1(h0).

Consequently, the asymptotic distribution of
√
n(ĥ− h0) is then

√
n(ĥ− h0) ∼ AN(B−1(h0)bf ,S(h0),�

2B−1(h0)).

We denote

F1 =
{
f
∣∣∣∣
∫
S
z̃(x)f (x) dx = 0,

∫
S
f2(x) dx��2S <∞

}
,

F2 =
{
f
∣∣∣∣
∫
S
z̃(x)f (x) dx = 0,

∫
S
f2(x) dx��2S <∞, |f (x0)|��0 <∞

}
,

and

F3 =
{
f
∣∣∣∣
∫
S
z̃(x)f (x) dx = 0,

∫
S
f2(x) dx��2S <∞,

∫
T
f2(x) dx��2T <∞

}

for positive constants �0 and �T . For the regression model (1), we assume that the contamination function f (x) is an unknown
member of one of the classes above. In fact, since the contamination classes above are so full, � has to have a density in order to
guarantee supf∈Fj

Ii, with (i, j)=(1, 1), (2, 2), or (2, 3), is finite. This can be established bymodifying the proof of Lemma 1 ofWiens

(1992). To implement the optimal design � in practice, however, it must be approximated by a discrete design. Approximation
methods are discussed in Section 6.
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Let k(x) be the density of �(x), then we have

B =
∫
S
a(x)k(x)z̃(x)z̃T(x) dx,

bf ,S =
∫
S
a(x)k(x)z̃(x)f (x) dx.

We also define K = ∫
S a

2(x)k2(x)z̃(x)z̃T(x) dx and G = K − BA−1
S B. We note that

(1) G is positive semidefinite since, for any vector c,

cTGc =
∫
S
{cT[k(x)a(x)I − BA−1

S )z̃(x)]}2 dx�0;

(2) a is a nonnegative function since a(�)[1 − 	(�)] = [	(�) − ��(�)][1 − 	(�)] + �2(�) with 	(�) − ��(�) >0.

3. Minimax designs for censored data

In this section, we investigate the optimal designs that minimize the maximum value of the loss, over f, in the following three
cases:

(P1) prediction problems with f ∈ F1;
(P2) one-point extrapolation problems with f ∈ F2; and
(P3) general extrapolation problems with f ∈ F3.

3.1. Minimax designs for prediction: solutions to P1

The loss function for Problem P1 is

I1 = n
∫
S
E[h(zT(x)ĥ) − h(zT(x)h0) − n−1/2f (x)]2 dx

= bTf ,SH
−1
S bf ,S + � tr(ASB

−1) +
∫
S
f2(x) dx.

Let � := �2/�2S represent the relative importance of variance versus bias.Wedefine �(1)k to be the largest solution to |G−�HS|=0

and c1 to be any vector satisfying (GH−1
S G − �(1)k G)c = 0, and

cTGc = 1. (4)

Given fixed k(x), the “max” part of the minimax solution is presented in Theorem 1.

Theorem 1. The maximum of I1 is

sup
f∈F1

I1(f ,�) = �2S [�
(1)
k + 1 + � tr(ASB

−1)] (5)

attained at

fk(x) = �Sz̃
T(x){a(x)k(x)I − A−1

S B}c1.

Problem P1 has become one of finding a density k(x) that minimizes (5). The following theorem provides the analytical form
of such minimax design density.

Theorem 2. The design density k(x)minimizing (5) for prediction is of the form

k(x) = [a(x)z̃T(x)Pz̃(x) + d]+

a2(x)z̃T(x)Qz̃(x)
, (6)

where (w)+ = max(w, 0), for some constant symmetric matrix P, a positive semi-definite matrix Q and a constant d that minimize (5)
and satisfy

∫
S k(x) dx = 1.
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Remark 1. For the case of unequal variances �2(x), the optimal design density k(x) for prediction is of the form

k(x) = [a(x)�2(x)z̃T(x)Pz̃(x) − a(x)z̃T(x)Tz̃(x) + d]+

a2(x)z̃T(x)Qz̃(x)

with two constant symmetric matrices P, T, and one positive semi-definite matrix Q .

The following presents two models with different censoring plans. These two models will serve as two typical examples
throughout this section and the sections hereafter in the context of all prediction, one-point and general extrapolation. Prior
to introducing these models, we first describe the definitions of the two censoring plans involved in these upcoming models:
(1) time (Type I) censoring is where the data are censored at a predefined time; (2) failure (Type II) censoring is where the data
are censored after a prespecified number of failures. Detailed information about these and other types of censoring can be found
in Nelson (1990).

Model 1: We suppose that the experimenter plans a design under the assumed regression model:

E(Y|x) = 0 +
q∑

i=1

ixi

with xi ∈ [bi1, bi2], and employs time censoring. The data are collected at a fixed time �(x1, x2, . . . , xq) ≡ � for all test units at all
stress levels. Note that for life testing, Y and x′

is stand for the transformed lifetime and stresses, respectively. Such transformations
are sometimes employed for the purpose of enhancing both linearity and normality simultaneously. So, it is sensible to consider
that the regression model assumed above is approximately true.

Model 2: For the nonlinear regression model:

E(Y|x) ≈ h

⎛
⎝0 +

p−1∑
i=1

ixi
⎞
⎠ ,

where h(z) = ez, we suppose that the failure censoring is planned with a constant expected failure proportion of failures at all
stress levels. We assume �(x) ≡ �. Namely, the experimenter expects about 100 × 	(�)% units fails at each stress level. So, a(�)
remains constant as well from its definition. We take S = [b1, b2].

Example 1. According to Theorem 2, when q = 1, the locally optimal robust prediction design for Model 1 is given by

k(x) =
[

a1 + a2x + a3x
2

a(�)(a4 + a5x + a6x2)
+ d

a2(�)(a4 + a5x + a6x2)

]+
,

where � = (� − 0 − 1x)/�, a4 and a6 are nonnegative and satisfy 4a4a6�a25; when q = 2,

k(x1, x2) =
[

a1x
2
1 + a2x1x2 + a3x

2
2

a(�)(a4x21 + a5x1x2 + a6x
2
2)

+ d

a2(�)(a4x21 + a5x1x2 + a6x
2
2)

]+
,

where � = (� − 0 − 1x1 − 2x2)/�, a4 and a6 are nonnegative and satisfy 4a4a6�a25. In addition, a1, a2, a3, a4, a5, a6 and d are

selected in order to minimize (5) subject to
∫ b12
b11

k(x) dx = 1 for the first case,
∫ b22
b21

∫ b12
b11

k(x1, x2) dx1 dx2 = 1 for the second.

Example 2. For Model 2 with p = 2, as a result of Theorem 2, the locally optimal design density for prediction is of the form

k(x) =
[
a1 + a2x + a3x

2

a4 + a5x + a6x2
+ d

e21x(a4 + a5x + a6x2)

]+
,

where a4�0, a6�0, and 4a4a6�a25. Besides, a1–a6 and d are determined so as to minimize (5) subject to
∫ b2
b1

k(x) dx = 1.

The dependence of the design on 1 makes such a design only locally optimal. This issue will be addressed in Section 5.

3.2. Minimax designs for one-point extrapolation: solutions to P2

The loss function for Problem P2 becomes

I2 = nE[h(zT(x0)ĥ) − h(zT(x0)h0) − n−1/2f (x0)]
2

= bTf ,SH
−1
0 bf ,S − 2f (x0)z̃

T(x0)B
−1bf ,S + �2z̃T(x0)B

−1z̃(x0) + f2(x0).
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Let rx0,S := �0/�S represent the relative amount of model response uncertainty at the extrapolation point and within the design

space. We define �(2)k = z̃T(x0)B−1GB−1z̃(x0), and c2 = B−1z̃(x0)/

√
�(2)k . For a fixed k(x), the maximization part of the minimax

solutions to Problem P2 is given by Theorem 3.

Theorem 3. The maximum of I2 is

sup
f∈F2

I2 = �2S [(

√
�(2)k + r0,S)

2 + �z̃T(x0)B
−1z̃(x0)] (7)

attained at

fk(x) =
{
�Sz̃

T(x)[a(x)k(x)I − A−1
S B]c2, x ∈ S,

−�0, x = x0.

The minimax solution for P2 is presented in Theorem 4.

Theorem 4. The design density k(x)minimizing (7) for one-point extrapolation is

k(x) =
[

zT(x)a
a(x)zT(x)b

+ �

a2(x)[z̃T(x)b]2

]+

for some p × 1 vectors a, b and constant � which satisfy: (i)
∫
S k(x) dx = 1, (ii) minimize (7).

Example 3. Recall Model 1 with q = 1. Suppose that the estimation extrapolates to one point x0 > b12 or x0 < b11. According to
Theorem 4, the locally optimal robust one-point extrapolation design for this model is given by

k(x) =
[

a1x + a2
a(�)(a3x + a4)

+ a5
{a(�)(a3x + a4)}2

]+
,

where � = (� − 0 − 1x)/�, and a1–a5 are chosen in order to minimize (7) subject to
∫ b12
b11

k(x) dx = 1.

When q=2, suppose that the estimation extrapolates to one point x0 = (x10, x20) with x10 > b12 and x20 > b22; or x10 < b11 and
x20 < b21. According to Theorem 4, the locally optimal robust one-point extrapolation design for this model is given by

k(x1, x2) =
[

a1x1 + a2x2 + a3
a(�)(a4x1 + a5x2 + a6)

+ a7
{a(�)(a4x1 + a5x2 + a6)}2

]+
,

where � = (� − 0 − 1x1 − 2x2)/�, and a1–a7 are chosen in order to minimize (7) subject to
∫ b22
b21

∫ b12
b11

k(x1, x2) dx1 dx2 = 1.

Example 4. We revisit Model 2 with x0 > b2 or x0 < b1. When p=2, the locally optimal design density for one-point extrapolation
is given by

k(x) =
[
a1x + a2
a3x + a4

+ a5
e21x(a3x + a4)

2

]+
, (8)

where a1–a5 are selected by minimizing (7) subject to
∫ b2
b1

k(x) dx= 1. The computation of the numerical values for a1–a5 in this

design will be presented in Section 5.

When p = 3, the locally optimal design density for one-point extrapolation is given by

k(x) =
[
a1 + a2x + a3x

2

a4 + a5x + a6x2
+ a7

e21x(a4 + a5x + a6x2)
2

]+
, (9)

where a1–a7 are selected by minimizing (7) subject to
∫ b2
b1

k(x) dx = 1.
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3.3. Minimax designs for general extrapolation: solutions to P3

The loss function for Problem P3 is

I2 = n
∫
T
E[h(zT(x)ĥ) − h(zT(x)h0) − n−1/2f (x)]2 dx

= bTf ,SHTbf ,S − 2bTf ,TB
−1bf ,S + �2 tr(ATB

−1) +
∫
T
f2(x) dx.

We denote rT,S := �T /�S for the relative amount of model response uncertainty in the extrapolation and design spaces. We also

denote �(3)k to be the largest solution to |G−�HT |=0 and let c3 be any vector satisfying (GHTG−�(3)k G)c=0 and (4). Themaximum
of I2 is given by Theorem 5.

Theorem 5. The maximum of I2 is

sup
f∈F3

I2(f ,�) = �2S [(

√
�(3)k + rT,S)

2 + � tr(ATB
−1)] (10)

attained at

fk(x) =

⎧⎪⎨
⎪⎩

�Sz̃
T(x)[a(x)k(x)I − A−1

S B]c3, x ∈ S,

−�T z̃T(x)B−1Gc3√
�(3)k

, x ∈ T.

The following theorem gives the optimal minimax design density for the general extrapolation Problem P3, which has the
same form as (6) for P1.

Theorem 6. The design density k(x)minimizing (10) for general extrapolation is

k(x) = [a(x)z̃T(x)Pz̃(x) + d]+

a2(x)z̃T(x)Qz̃(x)

for some constant symmetric matrix P, a positive semi-definite matrixQ , and a constant d that minimize (10) and satisfy
∫
S k(x) dx=1.

Example 5. For Model 1 with q = 1, and in the context of general extrapolation with extrapolation space T = [t1, t2]\[b11, b12],
as a result of Theorem 6, the locally optimal robust extrapolation design for such model is of the form

k(x) =
[
(a1 + a2x + a3x

2)
(a4 + a5x + a6x2)

+ d

a(�)(a4 + a5x + a6x2)

]+
,

where a4 and a6 are nonnegative and satisfy 4a4a6�a25. Moreover, a1–a6 and d are chosen to minimize (10) subject to∫ b12
b11

k(x) dx = 1.

Example 6. With Model 2, when p = 2, in the context of general extrapolation with extrapolation space T = [t1, t2]\[b1, b2], by
Theorem 6 the locally optimal design density for general extrapolation is given by

k(x) =
[
e21x(a1 + a2x + a3x

2) + d

e21x(a4 + a5x + a6x2)

]+
,

where a4�0, a6�0, 4a4a6�a25, and a1–a6, as well as d are selected so as to minimize (10) conditional on
∫ b2
b1

k(x) dx = 1.

4. Unbiased designs for censored data: solutions to P4–P6

For each case of P4–P6, we denote the bias component caused by model misspecification within the design space:

IB1(f ,�, �) = bTf ,SH
−1
S bf ,S

for P4,

IB2(f ,�, �) = bTf ,SH
−1
0 bf ,S − 2f (x0)z̃

T(x0)B
−1bf ,S



Author's personal copy

X. Xu / Journal of Statistical Planning and Inference 139 (2009) 486 -- 502 495

for P5, and

IB3(f ,�, �) = bTf ,SHTbf ,S − 2bTf ,TB
−1bf ,S

for P6. We say that a design/censoring pair (�, �) is unbiased if it satisfies one of

IBi(f ,�, �) = 0 for all f ∈ Fi, i = 1, 2, or 3.

Therefore, we have supf IBi(f ,�, �) = 0 for i = 1, 2, or 3.
Therefore, P4, P5, or P6 has become to find the design such that the maximum, over f , of its matching bias: supf IBi(f ,�, �) for

i = 1, 2, or 3 is zero. Let � = {∫S a−1(x) dx}−1. The following theorem offers a necessary and sufficient condition for unbiasedness,
the unbiased designs and the resulting losses, respectively.

Theorem 7. (a) The design k(x) is unbiased if and only if

a(x)k(x) ≡ �.

(b) The unbiased design density is

k(x) = �a−1(x).

(c) The corresponding losses under unbiased designs are as follows:

(i) for prediction,

I1 = �2S + �p�2.

(ii) for one-point extrapolation at x0,

I2 = �2T + ��2z̃T(x0)A
−1
S z̃(x0).

(iii) for general extrapolation,

I2 = �2T + ��2 tr(ATA
−1
S ).

We notice that the unbiased designs for the cases of prediction, one-point and general extrapolations are the same.

Example 7. With Model 1 and q = 1, as stated in Theorem 6, the locally unbiased design is of the form

k(x) = a−1(x)

{∫ b12

b11
a−1(x) dx

}−1

,

where

a(x) = 	
(

� − 0 − 1x
�

)
− � − 0 − 1x

�
�
(

� − 0 − 1x
�

)
+ �2((� − 0 − 1x)/�)

1 − 	((� − 0 − 1x)/�)
.

When q = 2, the locally unbiased design is of the form

k(x1, x2) = a−1(x1, x2)

{∫ b22

b21

∫ b12

b11
a−1(x1, x2) dx1 dx2

}−1

,

where

a(x1, x2) = 	
(

� − 0 − 1x1 − 2x2
�

)
− � − 0 − 1x1 − 2x2

�
�
(

� − 0 − 1x1 − 2x2
�

)
+ �2((� − 0 − 1x1 − 2x2)/�)

1 − 	((� − 0 − 1x1 − 2x2)/�)
.

Example 8. For Model 2, the unbiased robust design is uniformwith density k(x)= {∫S dx}−1 since a(x) is constant in this model.



Author's personal copy

496 X. Xu / Journal of Statistical Planning and Inference 139 (2009) 486 -- 502

5. Computation

In this section, we demonstrate the computation of numerical values of the constants in our constructed designs using one
typical ALT example: Model 2 with one-point extrapolation when p = 2.

As indicated in Example 4, the locally optimal design density for one-point extrapolation is given by (8). We assume S= [0, 1]
and x0 >1. We also let � be a predefined constant which is essentially the standard normality quantile corresponding to the
expected percentage of failures. For instance, if the experimenter plans to employ Type II censoring and expects 70% of the units
to fail at each stress level, � = 	−1(0.7) = 0.525. Then, a(�) remains constant given by a(0.525) = 0.921.

For Model 2, since the constant term a(�) has been cancelled out in the first term of (7), it is only involved in the second term
of (7). Let � = �/a(�). For prespecified model parameters, the design varies when x0, rx0,S or � changes. All of x0, rx0,S and � can

be determined by the experimenter. We also notice that the term e20 has been cancelled out in both the first and second terms
of (7). However, for fixed x0, rx0,S and �, the optimal design depends still on the value of 1, therefore, is only locally optimal.
To deal with this issue, we search for “locally most robust” designs as discussed in Wiens and Xu (2008a). To do this, firstly we
obtain the local optimal design for an initial value of 1; secondly, for this optimal design, we take a further maximum of the loss
as 1 varies over some interval I, and record the least favorable 1, written LF1 ; thirdly, we determine the coefficients of k(x) so
as to minimize this maximum loss for LF1 . We repeat this procedure until LF1 converges. A stopping rule for the convergences is
applied. For the minimization part, the minimizer (a1, a2, a3, a5) converges when one of the following two situations occurs: the
loss reduction being no more than t2/3 or maximum of the absolute changes in all the arguments a1, a2, a3, a5 being smaller than√
t, where t is a machine epsilon; for the maximization, the maximizer 1 converges when one of the following situations occurs:

the loss increment being no more than t2/3 or the absolute change in 1being smaller than
√
t, where t is a machine epsilon. In

the example below, we take t = 2−23.
To illustrate the approach described above, we consider the Class-B insulation data fromNelson (1990, Table 4.1 of Chapter 3).

Those data are collected from a singly time-censored ALT conducted using a uniform design on four specified testing levels.
The acceleration stress is temperature. The intention of this experiment is to estimate the lifetime for electric motors at the
normal usage temperature of 130 ◦C. The failures obtained from this test are at stress levels ranging from 170 to 220 ◦C.
The Arrhenius-lognormal model is fitted for those data and the MLEs for the model parameters are located by Nelson (1990). The
transformation of the lifetime used in this example is the logarithm and that of stress t is 1000 times the inverse of the absolute
temperature in degrees Kelvin, i.e. x′ = 1000/(t + 273.16). For simplicity, we transform x′ to our stress variable x with domain
of [0, 1] through the linear transformation x = (−2.028 + x′)/0.229. Under such transformations, the MLE of 1 for the nominal

Table 1
Numerical values for (8)

� a1 a2 a3 a5

S = [0, 1], 1 = 0.987, rx0,S = 1, and x0 = 1.98.
0.5 −0.190 0.0003 −0.730 1.131
1 −0.420 0.002 −0.806 1.146
2 −0.676 0.00003 −0.858 1.196

de
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Fig. 1. Optimal design densities k(x)=
[

a1x+a2
a3x+a4

+ a5

e21x (a3x+a4)
2

]+
for S= [0, 1], rx0,S = 1, and x0 = 1.98. (a) locally optimal design densities for 1 = 0.987; (b) locally

most robust design densities for 1 within I = [0.5, 1.5]. Each plots uses three values of �: � = 1 (solid line), � = 0.5 (broken line), � = 2 (dotted line).
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Table 2
Numerical values for (8)

� a1 a2 a3 a5 LF
1

S = [0, 1], 1 ∈ [0.5, 1.5], rx0,S = 1, and x0 = 1.98
0.5 0.049 0.001 −0.783 1.311 1.5
1 −0.142 0.002 −0.855 1.349 1.5
2 −0.318 0.00003 −0.897 1.417 1.5

Table 3
Relative efficiencies for locally optimal designs and locally most robust designs with S = [0, 1], rx0,S = 1, and x0 = 1.98

� True 1 being 0.987 True 1 being 1.5

Case (1) Case (2) Case (3) Case (4)

Local Most Local Most Local Most Local Most

0.5 1 0.990 0.334 0.838 0.991 1 0.338 0.841
1 1 0.993 0.055 0.679 0.994 1 0.044 0.673
2 1 0.974 0.029 0.586 0.979 1 0.020 0.556

model is ̂1 =0.987 and the corresponding 99% confidence interval for 1 is (0.730, 1.243). Taking themodel misspecification into
account, we consider an even broader region 1 ∈ I = [0.5, 1.5]. We apply the same extrapolation point x0 = 1.98 as employed in
Nelson (1990), which is equivalent to the normal usage temperature: t0 = 130 ◦C.

It should be noted that in (8), if one of a1–a5 is nonzero, then we can assume that it is 1. In the following computation we take
a4 = 1. For locally optimal designs when 1 = 0.987, see Table 1 for the numerical values of the constants in (8) with various �
and Fig. 1(a) for the plots. For locally most robust designs, we carry out the process described above for I = [0.5, 1.5] and several
�, each time starting at 1 = 0.987. The locally most robust designs are detailed in Table 2. For these locally optimal designs,
the corresponding maximum loss functions are nondecreasing functions with respect to 1. In each case, we find that the least
favorable 1 are attained at the upper bound of I: 1.5. See Fig. 1(b) for the plots. All plots use a4 = 1 and rx0,S = 1. The Splus code
for finding the optimal robust design is available at author's website: http://spartan.ac.brocku.ca/∼xxu/find_robust_designs.SSC.

In order to compare the relative efficiencies of these two classes of designs, we consider the following four cases: (1) both
true and assumed 1 being 0.987, (2) true 1 being 0.987 but assumed 1 being 1.5, (3) both true and assumed 1 being 1.5, (4)
true 1 being 1.5 but assumed 1 being 0.987. We define that the relative efficiency is the ratio of the loss for the case of the
assumed 1 being correct and the loss for that the corresponding case of the assumed 1 beingwrong. Table 3 provides the values
of the relative efficiencies for both types of designs shown in Tables 1 and 2. The densities for locally optimal designs and locally
most robust designs are considerably similar in Fig. 1. Consequently, when the specifications in 1 are correct, the efficiency of
the two designs are fairly close (see Cases (1) and (3) in Table 3). However, for all other cases the relative efficiencies for locally
optimal designs are below 35%. It shows that the locally optimal designs (denoted by “Local”) lose their efficiencies rapidly once
1 is misspecified. On the other hand, the relative efficiencies of the most robust designs (Most) remains above 55% for all cases
with amisspecified 1. This indicates that themost robust deigns should be consideredwhen the experimenter suspects possible
moderate misspecification.

We note that for the extreme case, when the data are complete, � −→ ∞, we have a(�)= 1. In this case, the results obtained in
Section 3 for this extreme case degenerate into the exact optimal robust designs for complete data which are presented inWiens
and Xu (2008a, b).

6. Implementation

In this section, we discuss some implementation schemes that are utilized to approximate a robust design having a density,
which inpractice is not implementable.Wealso confirm that oneof thematchingquantile schemesused in the literature is optimal
with respect to certain criteria. In addition, using this optimal implementation schemes proposed, the resulting implementable
designs for the designs which have obtained in the previous section are given.

In the preceding section of the present paper, we have obtained a number of robust designs for various cases which turned
out to have densities. Such designs with densities are prevalent in the literature. See, for instance, Huber (1975), Wiens (1990,
1992), Wiens and Xu (2008a, b). In addition, Heo (1998) listed quite a few such continuous designs. Wiens (1992) showed that if
the contamination class is an L2-type of space, e.g. ClassFi (i=1, 2, 3) in Section 2, any optimal designminimizing themaximum
loss function over such contamination space has to be absolutely continuous. In practice, a design should tell the experimenter
what the design support points are and howmany subjects should be allocated to each of these points. An implementable design,
�, must be a discrete probability measure which puts probability �(xi) at xi. For a given r�n, let x1,x2, . . . ,xr be the distinct
design points, the number of subjects allocated to a particular design point xi on design space is then, n�(xi). In addition, each
�(xi), i = 1, 2, . . . , r, should be an integer multiple of 1/n. A design with this integer property is called an exact design.
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Table 4
Exact design temperatures t ( ◦C) which approximate the designs presented in Table 1

� Design points for n = 10, t ∈ [170 ◦C, 220 ◦C], 1 = 0.987, rx0,S = 1, and t0 = 130 ◦C

0.5 171.53 175.39 179.95 185.05 190.48 196.04 201.59 207.04 212.33 217.45
1 171.19 174.4 178.8 184.18 190 195.87 201.60 207.12 212.42 217.48
2 170.68 172.82 176.58 182.57 189.42 195.92 201.91 207.47 212.67 217.58

Table 5
Exact design temperatures t ( ◦C) which approximate the designs presented in Table 2

� Design points for n = 10, t ∈ [170 ◦C, 220 ◦C], 1 ∈ [0.5, 1.5], rx0,S = 1, t0 = 130 ◦C

0.5 171.43 175.07 179.60 184.93 190.77 196.76 202.58 208.06 213.12 217.77
1 171.06 174.22 178.83 184.64 190.95 197.17 203.02 208.40 213.33 217.83
2 170.58 172.87 177.36 184.20 191.36 197.88 203.7 208.92 213.64 217.93

Since a design with density is not an exact design, a few implementation approaches have been introduced in the literature.
Wiens (1992) suggested a randomized design. That is, the design points are randomly chosen from an optimal design density.
Wiens and Zhou (1996) presented amore systematic approach ofmatching quantiles that places an equal number of observations
at the quantiles of an optimal design density. This type of approach has been used in both Heo (1998) and Fang (1999). Matching
moments is another method that chooses design points such that the empirical moments match up as closely as possible with
the theoretical moments, obtained from the optimal density, to a sufficiently high order. This approach has been seen in Heo et al.
(2001) and Adewale (2002). An innovation for obtaining an exact designwas presented by Fang andWiens (2000), who redefined
the problem by considering a finite design space and applying the simulated annealing algorithm. See also most recently in
Adewale and Wiens (2006).

The following discusses an optimal approximation for one-dimensional design space. There are two kinds of matching
quantile approaches appearing in the literature. In the first, used in Wiens and Zhou (1996), one observation is placed at each of
the following quantiles:

x(1)i = F−1
�0

(
i − 0.5

n

)
, i = 1, 2, . . . ,n, (11)

where �0 is an optimal design with a density, and F�0
is the cumulative distribution function of �0. In the second, used in Heo

et al. (2001), one observation is placed at

x(2)i = F−1
�0

(
i − 1
n − 1

)
, i = 1, 2, . . . ,n.

The first approach provides a sample from �0 with a smaller Kolmogorov–Smirnov statistic, since

max
1� i�n

∣∣∣∣F�0 (x(1)i ) − ti
n

∣∣∣∣= 1
2n

and

max
1� i�n

∣∣∣∣F�0 (x(2)i ) − ti
n

∣∣∣∣= 1
n
,

where ti is the number of design points less than xi. For a fixed number of experimental subjects n, the following theorem shows
that (11) is optimal under the defined criteria below.

Theorem 8. The first matching quantile approach provided by (11) offers an optimal approximation which minimizes the overall
“distance” between the optimal design �0 and the resulting one when this distance is defined as

D =
∫
S
|F�0 (x) − F�(x)|m dx,

for any positive m, among all the designs of the form of �(x) = (1/n)
∑n

i=1 I(x = xi).

Let us take n = 10 as a simple implementation exercise. We use (11) to obtain the exact designs in term of points x′s within
design space S = [0, 1]. Then, we transform these points into the design temperatures (stress levels) in term of t ( ◦C). See Tables
4 and 5 for the results.
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Appendix A. List of symbols

Y response variable
x q-dimensional explanatory variable vector
x0 extrapolation point
�2 variance of Y
f

√
n[E(Y|x) − h(zT(x)h0): contaminant

� zT(x)h
I1 n

∫
S E[h(z

T(x)ĥ) − E(Y|x)2 dx prediction loss

I3 n
∫
T E[h(z

T(x)ĥ) − E(Y|x)2�(dx): general extrapolation loss

c an indicator function for censoring, defined by c(y|x) =
{
1 when y(x)��(x),
0 when y(x) > �(x).

� standard normal density
	 standard normal cumulative distribution function
li log likelihood of the ith individual observation
AS

∫
S z̃(x)z̃

T(x) dx
AT

∫
T z̃(x)z̃

T(x) dx
HS B−1ASB

−1

HT B−1ATB−1

bf ,T
∫
T z̃(x)f (x) dx

b̃f (h0) asymptotic expectation of the score function evaluated at h0
̂ maximum likelihood estimate of 0

� censoring time
S design space
T extrapolation region
h0 arg mint

∫
S[E(Y|x) − h(zT(x)t)2 dx: true value of regression parameters

z(x) p-dimentional regressor vector

z̃(x)
(

dh
d�

∣∣∣
h=h0

)
z(x)

I2 nE[h(zT(x0)ĥ) − E(Y|x0)2: one-point extrapolation loss
�
∑n

i=1 I(x = xi): design measure, where I is the indicator function

wi
y(xi)−h(zT(xi)h0)

� : standardized observation at specified stress level xi

�i
�(xi)−h(zT(xi)h0)

� : standardized censoring time at specified stress level xi
�S upper bound of |f | within S
A0 z̃(x0)z̃T(x0)
B
∫
S a(x)z̃(x)z̃

T(x)�(dx)
H0 B−1A0B−1

bf ,S
∫
S a(x)z̃(x)f (x)�(dx)

I(h0) asymptotic information matrix of 0
C(h0) asymptotic variance–covariance matrix of the score function evaluated at h0
k(x) the density of �(x)

K
∫
S a

2(x)k2(x)z̃(x)z̃T(x) dx
F1 contamination class for prediction problems
F3 contamination class for general extrapolation

�(1)k the largest solution to |G − �HS| = 0

c1 any vector satisfying (GH−1
S G − �(1)k G)c = 0, and cTGc = 1

c2
B−1z̃(x0)√

�(2)k
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�(3)k the largest solution to |G − �HT | = 0
IB1 prediction bias
IB3 general extrapolation bias
G K − BA−1

S B
F2 contamination class for one-point extrapolation
� �2/�2S : relative importance of variance versus bias

�(2)k z̃T(x0)B−1GB−1z̃(x0)
rx0,S �0/�S: relative amount of response uncertainty at the extrapolation point versus within the design space
rT,S �T /�S: relative amount of response uncertainty in the extrapolation versus design spaces

c3 any vector satisfying (GHTG − �(3)k G)c = 0
IB2 one-point extrapolation bias

�
{∫

S a
−1(x) dx

}−1

Appendix B. Derivations

Proof of Theorem 1. Since the term �2 tr(ASB
−1) in I1 does not involve f , the maximization problem becomes to maximize

bTf ,SH
−1
S bf ,S + ∫

S f
2(x) dx over f . We obtain

max
f

(bTf ,SH
−1
S bf ,S) = �2S�

(1)
k ,

attained at fk(x) = �S z̃T(x){k(x)a(x)I − A−1B}c1 in a way akin to that used in Theorem 1 of Wiens (1992), and therefore the
derivations are omitted here. Theorem 1 follows immediately from

∫
S f

2
k (x) dx = �2S . �

The result of Theorem 2 is obtained in a manner very similar to but simpler than that used in Theorem 1 of Wiens and Xu
(2008b), and so its proof is omitted.

Theorem 3 follows Theorem 1 of Wiens and Xu (2008a) immediately.

Proof of Theorem 4. We look for a nonnegative function k(x) minimizing (7) subject to
∫
S k(x) dx = 1. We introduce a Lagrange

multiplier t. It is sufficient to show that k(x) minimizes

(

√
�(2)k + rx0,S)

2 + �z̃T(x0)B
−1z̃(x0) − 2t

∫
S
k(x) dx

among all density functions. After some protracted calculation, we obtain the first order condition∫
S
{P(x)k(x) − Q(x) − u}(k − k1) dx�0

for all densities k1, where P(x) = [a(x)z̃T(x)b]2 and Q(x) = [z̃T(x)c][a(x)z̃T(x)b] with

b= B−1z̃(x0),

c=

⎡
⎢⎢⎢⎣B−1K + �

2

⎛
⎜⎜⎝1 +

rx0,S√
�(2)k

⎞
⎟⎟⎠

−1

I

⎤
⎥⎥⎥⎦b,

u =

⎛
⎜⎜⎝1 +

rx0,S√
�(2)k

⎞
⎟⎟⎠

−1

t.

The proof now can be completed in the same way as for Theorem 6 of Wiens and Xu (2008a). �

Proof of Theorem 5. The term � tr(ATB−1) in I2 does not involve f , so themaximization problembecomesmaximizingbTf ,SHTbf ,S
−2bTf ,TB

−1bf ,S + ∫
T f

2(x) dx over f . We obtain

max
f

(bTf ,SHTbf ,S − 2bTf ,TB
−1bf ,S) = �2S

⎡
⎣
(√

�(3)k + rT,S

)2
− r2T,S

⎤
⎦ ,
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attained at

fk(x) =
⎧⎨
⎩

�Sz̃
T(x)[a(x)k(x)I − A−1

S B]c3, x ∈ S,

−�T z̃
T(x)B−1Gc3/

√
�(3)k , x ∈ T,

in a way essentially identical to that used in Theorem 2.1 (a) of Fang and Wiens (1999). Theorem 5 follows immediately from∫
S f

2
k (x) dx = �2S . �

The proof of Theorem 6 is very similar to that of Theorem 1 in Wiens and Xu (2008b), so is omitted.

Proof of Theorem 7. According to the results of Theorems 1, 3, and 5, we have got

sup
f∈F1

IB1(f , k) = �2S�
(1)
k ,

sup
f∈F2

IB2(f , k) = �2S [(

√
�(2)k + rx0,S)

2 − r2x0,S
],

sup
f∈F3

IB3(f , k) = �2S [(

√
�(3)k + rT,S)

2 − r2T,S].

For the unbiased designs, we then have

sup
f∈Fi

IBi(f , k) = 0 ⇔ �(i)k = 0 ⇔ G = 0

⇔ [a(x)k(x)I − BA−1
S ]z(x) = 0 a. e.

for each i = 1, 2, or 3. We find that a(x)k(x) is a constant almost everywhere on S in a manner essentially identical to that in the
proof of Theorem 2.2 (b) in Fang and Wiens (1999). This fact together with

∫
S k(x) dx = 1, completes the proof of (a) and Part (b),

(c) follow (a) immediately. �

Proof of Theorem 8. To illustrate this, we put the xi in increasing order, i.e. x1 < x2 < · · · < xn. Let S = [a, b], we then have

D =
∫ x1

a
|F�0 (x) − F�(x)|m dx +

n−1∑
i=1

∫ xi+1

xi
|F�0 (x) − F�(x)|m dx +

∫ b

xn
|F�0 (x) − F�(x)|m dx.

To minimize D, by taking the derivative with respect to each xi, we find that the minimizing xi is a solution of the following
equation:∣∣∣∣F�0 (x) − i

n

∣∣∣∣m =
∣∣∣∣F�0 (x) − i + 1

n

∣∣∣∣m, (12)

for i = 1, 2, . . . ,n. Theorem 1 follows (11) satisfies (12) form>0. �
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