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We discuss the construction of D-optimal sequential designs for the analysis of

longitudinal data or repeated measurements using generalized linear mixed models

(GLMMs). We investigate the performance of the design through a simulation study,

which indicates that the proposed design can be very successful in improving the

efficiency of the ML estimators in GLMMs relative to some common competitors. Our

simulations also suggest that the usual normal-theory inference procedures remain valid

under the sequential sampling schemes. We also present an example using real data

obtained from a clinical study.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The optimal choice of designs is important in many clinical studies. A common goal of the optimal design of an experiment
is to estimate the model parameters as precisely as possible, while minimizing the cost associated with sampling individuals.
For example, in a case–control study, patients may be observed repeatedly over a certain period of time. The repeated
responses from a single patient are naturally correlated, and mixed effects models are commonly used to describe the
correlation structure. The goal of the design technique is to determine optimal sampling times for patients so that precise
estimates of the parameters can be obtained for a model defining the relationship between the response variable and other
covariates in the study.

Optimal designs in the settings of linear and nonlinear mixed effects models were investigated by a number of authors.
Stroud et al. (2001) studied optimal designs in population pharmacokinetic studies. They discussed the choice of optimal
sampling times in a population pharmacokinetic study of the anticancer agent paclitaxel conducted by the Cancer and Leukemia
Group B (CALGB). The authors proposed a simulation-based method for Bayesian optimal design in the CALGB study. Ouwens
et al. (2002) considered optimal selection and allocation of time points in repeated measured experiments. They proposed a
maxmin criterion for locally D-optimal designs, and demonstrated that for a large class of symmetric designs, the smallest
relative efficiency over the model parameter space could be substantial. Han and Chaloner (2004) investigated a Bayesian
experimental design for the analysis of nonlinear mixed effects models. The authors formulated the design problem as a
decision of choosing the values of the predictor(s) based on a criterion that minimizes the posterior risk. Schmelter (2007)
considered an approximate optimal design for the estimation of fixed effects parameters in a certain class of mixed models.

Dragalin et al. (2008) proposed an adaptive design for dose-finding in clinical trials with combination of two drugs when
several responses can be observed simultaneously on each subject. They considered modeling the distribution of bivariate
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binary responses using the bivariate probit model, and described the adaptive designs in the framework of the optimal design
theory. Adewale and Xu (2010) discussed robust static designs for generalized linear models with protection for possible
departures from the usual model assumptions, such as inaccuracy in an assumed linear predictor, overdispersion, and
misspecification of the link function.

Although the choice of optimal designs in the framework of linear and nonlinear mixed models for continuous responses
has been studied extensively in the literature, very few studies have been done for optimal designs in the context of
generalized linear mixed models (GLMM), and our contribution of constructing D-optimal sequential designs will break
completely new ground. GLMMs are commonly used in the analysis of clustered correlated discrete binary and count
data including longitudinal data or repeated measurements. GLMMs are also useful for accommodating the overdispersion
often observed among nonnormally distributed responses and for modeling the dependence among responses
inherent in longitudinal or repeated measures data by incorporating random effects (Stiratelli et al., 1984; Zeger et al.,
1988; Breslow and Clayton, 1993). It is usually assumed that the random effects have a multivariate normal distribution
whose variance components are to be estimated from the data. A full maximum likelihood (ML) analysis based on the joint
marginal likelihood of the responses can be used for estimating both fixed and random effects parameters in GLMMs.

In this article, we propose and explore techniques for the design of experiments, where the design issue is formulated as a
decision of choosing the values of the predictor(s) for GLMMs. The mean response in GLMMs is generally nonlinear, and the
usual measures of performance of a design depend on the parameters being estimated. A sequential approach is then
naturally suggested—one should choose design points so as to maximize a measure of performance evaluated at the
estimates obtained from observations made at previous design points. See Fedorov (1972, Chapter 4).

Chaudhuri and Mykland (1993) considered such problems in the framework of linear and nonlinear models for
independent data in which a static initial design was to be augmented by a sequentially chosen set of design points.
Subsequent design points were to be chosen so as to maximize the determinant of the Fisher information matrix for both fixed
and random effects parameters, evaluated at the current parameter estimates. Assuming that the fitted response was a
member of the chosen parametric family and that the random errors were homoscedastic, they demonstrated that a sequence
of the maximum likelihood estimators of the regression parameters was asymptotically normal, and that the sequence of
designs was asymptotically D-optimal, in the sense of maximizing the determinant of the true Fisher information matrix.

Sinha and Wiens (2002) also studied design problems in the framework of an approximate nonlinear regression model,
and investigated sequential design methodologies when the fitted model was possibly of an incorrect parametric form.
The authors considered approximating the mean response in the underlying regression model y¼ EðyjxÞþe as EðyjxÞ � f ðx,h0Þ,
for a certain function f and parameter vector h0. The random errors e were assumed to be uncorrelated, with variances
possibly dependent on x. They fitted the approximate model y¼ f ðx,hÞþe by ordinary least squares, or more generally,
by M-estimation, but chose design points sequentially using the I-optimality criterion with the possibility of
heteroscedasticity in mind, and with an awareness of the approximate nature of the fitted model.

In this paper, we extend the D-optimal sequential design methodologies to the case of a generalized linear mixed model for
dependent data. We provide the Fisher information for the MLEs of both fixed effects parameters and random effects parameters.
An adaptive method of solving the maximum likelihood estimating equations is given, and some comparative studies of our
resulting designs and commonly used uniform designs are presented for both cross-sectional and longitudinal cases. The
resulting designs offer better precision in the estimation for both fixed effects parameters and random effects parameters.

The paper is organized as follows. In Section 2, we introduce the model and notation to define the D-optimal design
criterion for GLMMs. In Section 3, we present a simple example to illustrate the computational issues inherent in the choice of
sequential designs. In Section 4, we present results from a simulation study, and demonstrate that the proposed design is
useful in improving the efficiency of the ML estimators in GLMMs. We also investigate the usual normal-theory inference
properties of the ML estimators under sequential designs in the simulations. Section 5 presents an application of the proposed
design using some real data from a clinical experiment. Section 6 concludes the paper with some discussion.

2. Model and notation

Suppose conditional on the vector of random effects u, the elements of the response vector y¼ ðy1, . . . ,ynÞ
t are

independently distributed and follow a distribution in the exponential family:

fyijuðyju,b,fÞ ¼ exp
yyi�bðyiÞ

aðfÞ
þcðy,fÞ

� �
ð1Þ

for some functions a, b and c. Here the canonical parameter yi ¼ xt
i bþzt

i u, with xi
t being the ith row of the design matrix X for

the fixed effects and with zi
t being the ith row of the design matrix Z for the random effects. We further assume that the vector

of random effects u follows a distribution:

u� fuðujaÞ ð2Þ

depending on parameters a. For (1) and (2), the classical likelihood function can be defined as

Lðb,f,ajyÞ ¼
Z Yn

i ¼ 1

fyi juðyiju,b,fÞfuðujaÞ du: ð3Þ
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The ML estimators of the parameters b, f and a can be obtained by maximizing this likelihood function using suitable
numerical techniques.

For simplicity, here we consider f¼ 1, as this is the case for binary and Poisson regression. Note that when the marginal
distribution of y can be defined as a mixture as in (3), the classical ML estimating equations for b and a take the form

E
@logfyjuðyju,bÞ

@b

����y
� �

¼ 0 ð4Þ

and

E
@logfuðujaÞ

@a

����y
� �

¼ 0, ð5Þ

respectively, where the expectation is taken with respect to the conditional distribution of u given y (see McCulloch and
Searle, 2001, for details). The ML estimators of b and a can be obtained by solving the above equations using some iterative
method such as the Newton–Raphson method as described in McCulloch (1997).

The observed Fisher information can be obtained in a matrix form as

Ioðb,aÞ ¼
Io11ðb,aÞ Io12ðb,aÞ

Io21ðb,aÞ Io22ðb,aÞ

" #
, ð6Þ

where

Io11ðb,aÞ ¼
@2logL

@b@bt ¼ E
@2logfyjuðyju,bÞ

@b@bt

����y
( )

þE
@logfyjuðyju,bÞ

@b

@logfyjuðyju,bÞ

@bt

����y
( )

�E
@logfyjuðyju,bÞ

@b

����y
� �

E
@logfyjuðyju,bÞ

@bt

����y
( )

,

ð7Þ

Io22ðb,aÞ ¼
@2logL

@a@at
¼ E

@2logfuðujaÞ
@a@at

����y
� �

þE
@logfuðujaÞ

@a
@logfuðujaÞ

@at

����y
� �

�E
@logfuðujaÞ

@a

����y
� �

E
@logfuðujaÞ

@at

����y
� �

, ð8Þ

and

Io12ðb,aÞ ¼ It
o21ðb,aÞ ¼

@2logL

@b@at
¼ E

@logfyjuðyju,bÞ

@b

@logfuðujaÞ
@at

����y
� �

�E
@logfyjuðyju,bÞ

@b

����y
� �

E
@logfuðujaÞ

@at

����y
� �

: ð9Þ

It can be shown that for the exponential family (1),

E
@logfyjuðyju,bÞ

@b

����y
� �

¼Xt
½y�Eflðb,uÞjyg� ð10Þ

and

E
@2logfyjuðyju,bÞ

@b@bt

����y
( )

¼�EfXtWðb,uÞXjyg, ð11Þ

where Wðb,uÞ ¼ diagfvarðyijuÞg. The expected Fisher information can be obtained by taking the marginal expectations of the
expressions (6)–(9) with respect to the response vector y. After simplification, we can show that

E �
@2logL

@b@bt

( )
¼ E E

@logfyjuðyju,bÞ

@b

����y
� �

E
@logfyjuðyju,bÞ

@bt

����y
( )" #

, ð12Þ

E �
@2logL

@a@at

� �
¼ E E

@logfuðujaÞ
@a

����y
� �

E
@logfuðujaÞ

@at

����y
� �� �

, ð13Þ

and

E �
@2logL

@b@at

� �
¼ E E

@logfyjuðyju,bÞ

@b

����y
� �

E
@logfuðujaÞ

@at

����y
� �� �

: ð14Þ

Similarly to Sinha and Wiens (2002), we adopt a sequential approach to the D-optimal design problem. We assume that
the experimenter initially obtains data fyi; i¼ 1, . . . ,n0g from a group of n0 individuals measured at n0 locations (or design
points) fxj; j¼ 1, . . . ,n0g determined in advance. Then subsequent data are obtained at locations xjðj¼ n0þ1,n0þ2, . . .Þ
intended to maximize the determinant of the expected Fisher information matrix. The algorithm for choosing the sequential
D-optimal designs can be described as follows:

1. For the initial data fðyi,xiÞ; i¼ 1, . . . ,n0g, find the ML estimates of the model parameters c¼ ðbu,auÞu. Call these initial
estimates ĉ0 ¼ ðb̂0u,â0uÞu.
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2. Using these initial estimates, evaluate the Fisher information matrix

Iðĉ0Þ ¼ E �
@2logL

@c@ct

� �
c ¼ ĉ0

: ð15Þ

3. Choose a new design point x�n0þ1 by maximizing the determinant of the Fisher information matrix Iðxn0þ1jĉ0Þwith respect
to xn0 þ1:

x�n0 þ1 ¼ argmax
xn0 þ 1

jIðxn0þ1jĉ0Þj: ð16Þ

4. Update the parameter estimates for the augmented data obtained at the new design point x�n0þ1. Obtain the next
sequential design point based on the new set of estimates, and so on.

We choose n1 design points x�n0þ1, . . . ,x�n0þn1
sequentially using this algorithm. In the next section, we present a simple

example to illustrate the computational issues involving the calculation of the expected Fisher information.

3. Illustrative example: a binary mixed model

Suppose in a dose-finding clinical study, the experimenter initially obtains n0 repeated measurements from each of k

patients treated with n0 different doses fxj; j¼ 1, . . . ,n0g of a drug over a certain period determined in advance. Assume that
the n0 repeated measurement fyij,j¼ 1, . . . ,n0g on the ith patient follow a simple binary mixed model with a single random
effect and a single fixed effect:

yijjui � independent BernoulliðpijÞ, i¼ 1, . . . ,k; j¼ 1, . . . ,n0,

yij ¼ logfpij=ð1�pijÞg ¼ b0þb1xjþui,

ui � independent Nð0,s2Þ: ð17Þ

In this setup, we have EðyijjuiÞ ¼ mijðb,uiÞ ¼ expðb0þb1xjþuiÞ=f1þexpðb0þb1xjþuiÞg and varðyijjuiÞ ¼ mijðb,uiÞf1�mijðb,uiÞg. To
estimate the regression parameters b¼ ðb0,b1Þu, we can solve the ML estimating equations (4) by an iterative method. The
Newton–Raphson iterative equation takes the form

bðmþ1Þ
¼ bðmÞ þ½EfXtWðbðmÞ,uÞXjyg��1Xt

½y�EflðbðmÞ,uÞjyg� ð18Þ

for m¼ 1,2,3, . . . : The variance component s2 can be estimated simultaneously from the iterative equation

s2ðmþ1Þ ¼
1

k

Xk

i ¼ 1

Eðu2
i jyiÞ, ð19Þ

where yi is the response vector ðyi1, . . . ,yin0
Þ
t for the ith subject.

To calculate the Fisher information matrix, we can show that

E �
@2logL

@b@bt

 !
¼ E E

@logfyjuðyju,bÞ

@b

����y
� �

E
@logfyjuðyju,bÞ

@bt

����y
( )" #

¼ E½Xt
½y�EflðbðmÞ,uÞjyg�½y�EflðbðmÞ,uÞjyg�tX�, ð20Þ

E �
@2logL

@ðs2Þ
2

 !
¼ E E

@logfuðujs2Þ

@s2

����y
� �� �2

" #
¼

k

2s4

� �2

E
1

k

Xk

i ¼ 1

Eðu2
i jyiÞ�s2

( )2
2
4

3
5¼ 1

2s4

� �2 Xk

i ¼ 1

varfEðu2
i jyiÞg, ð21Þ

and

E �
@2logL

@b@s2

� �
¼ E E

@logfyjuðyju,bÞ

@b

����y
� �

E
@logfuðujs2Þ

@s2

����y
� �� �

¼ E Xt
½y�EflðbðmÞ,uÞjyg�

k

2s4

1

k

Xk

i ¼ 1

Eðu2
i jyiÞ�s2

( )" #
: ð22Þ

For the given initial data fðyij,xjÞ; i¼ 1, . . . ,k; j¼ 1, . . . ,n0g at n0 design points (or doses), we find the initial ML estimates
ĉ0 ¼ ðb̂0u,ŝ

2
0Þu of the model parameters c¼ ðbu,s2Þu. Based on these initial estimates, we then obtain n1 new design points xj

(j¼ n0þ1,n0þ2, . . . ,n0þn1), with n¼ n0þn1, by using the sequential D-optimal design scheme as described in Section 2. We
can consider obtaining repeated observations at the n1 new locations from a fixed set of k patients (or subjects) determined in
advance. Alternatively, additional data can be obtained from a group of new patients measured repeatedly at the n1

sequential design points.
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4. Simulation study

We ran a series of simulations to explore the properties of the ML estimators obtained under the sequential design scheme.
We compare two classes of designs:

1. The sequentially determined adaptive designs described in the previous section. The performance is analyzed after the
addition of k observations, at a chosen location xj*, for j¼ n0þ1, . . . ,n0þn1. We choose xj* by numerically maximizing the
determinant of the Fisher information matrix IðxjjcÞ.

2. The ‘‘uniform’’ designs, with the initial design augmented by an additional k observations at each of n�n0 locations. In
these designs, the experimental points are uniformly distributed throughout the design space. In the case of uniform
designs, when n¼ n0þn1 the locations are equally spaced over [0,3]; for smaller values of n they form a subset of these
sites. Thus these designs are sequential but nonadaptive.

Data were generated from the binary mixed model (17) with the values of the parameters fixed at ðb0,b1Þ ¼ ð�2,2Þ and
s2 ¼ 0:5. The initial data were obtained from k¼ 50 individuals (referred to as clusters) with each individual being observed
at four equally spaced design points x¼ 0,1,2, and 3. Then under the sequential design scheme, data were augmented by
adding binary responses from k¼ 50 clusters observed at each sequentially chosen design point from the design space
x 2 ½0,3�. Fig. 1 exhibits a plot of the determinant of the Fisher information against the design x for a typical set of initial data
generated from the mixed model (17). It is clear that the next sequential design point chosen by the D-optimal design scheme
is x=0.6. We obtained additional data at three new locations under both sequential and uniform design schemes.

In Fig. 2, we exhibit the plot of the average, over 500 simulation runs, of the determinant of the Fisher information against
the number of sequential points at which additional data were obtained. It is clear from the figure that the sequential design
out-performed the uniform design, as expected.
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In Fig. 3, we exhibit the histogram of the sequentially chosen design points over the 500 runs. We observe that the location
of the first sequential design is approximately 0.75, whereas the locations of the second and third sequential designs are 1.75
and 0.5, respectively.

We also study the asymptotic normality properties of the estimators obtained under the two design schemes. Table 1 reports
the empirical coverages (over 500 simulation runs) and their standard errors, and the mean lengths and standard errors of these
means for 95% individual normal confidence intervals on the model parameters. It is clear that the coverage probabilities
are similar under both designs, but the sequential design generally provides smaller lengths of the confidence intervals. The
coverage probability for the variance component s2 appears to be smaller than the nominal 95% confidence level under both
designs, which is mainly due to the bias in the estimator ofs2 for small sample sizes considered here. We find (not shown here)
that when the number of clusters, k, increases, the empirical coverages for s2 move closer to the nominal 95% confidence level.

We also studied the properties of the ML estimators under the D-optimal and uniform design schemes in the case of a
Poisson mixed model for count data. We consider a simple Poisson mixed model in the form

yijjui � independent PoissonðlijÞ, i¼ 1, . . . ,k; j¼ 1, . . . ,n0,

0.0

0

1st sequential point

0

2nd sequential point

0

3rd sequential point

0

All sequential points

0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Fig. 3. Histogram of optimal sequential design points for a binary mixed model chosen over 500 simulation runs.

Table 1
Empirical coverages and lengths of 95% confidence intervals on the parameters of a binary mixed model (standard errors in parentheses).

Design n�n0 b0 b1 s2

Coverage Length Coverage Length Coverage Length

D-optimal 1 0.960 (0.0088) 1.473 (0.0121) 0.952 (0.0096) 1.214 (0.0108) 0.880 (0.0145) 2.584 (0.0815)

2 0.962 (0.0086) 1.238 (0.0072) 0.960 (0.0088) 1.002 (0.0059) 0.882 (0.0144) 1.297 (0.0214)

3 0.978 (0.0066) 1.081 (0.0058) 0.968 (0.0079) 0.895 (0.0055) 0.894 (0.0138) 0.983 (0.0164)

Uniform 1 0.944 (0.0103) 1.594 (0.0151) 0.936 (0.0109) 1.230 (0.0138) 0.854 (0.0158) 2.839 (0.1027)

2 0.948 (0.0099) 1.341 (0.0103) 0.938 (0.0108) 1.007 (0.0086) 0.856 (0.0157) 1.657 (0.0462)

3 0.958 (0.0090) 1.174 (0.0076) 0.948 (0.0099) 0.896 (0.0068) 0.886 (0.0142) 1.161 (0.0283)

Augmented data were obtained from sequential D-optimal and uniform designs.
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yij ¼ logðlijÞ ¼ b0þb1ziþb2xjþb3zixjþui,

ui � independent Nð0,s2Þ, ð23Þ

where zi is a subject-specific binary covariate, which is 1 if individual i has a particular disease, and is 0 if the individual is from
an otherwise healthy group. We consider k=50 individuals in the study in which 25 individuals correspond to the disease
group (zi=0), and the remaining 25 individuals correspond to the healthy group (zi=1). The covariate xj represents the jth dose
of a drug that is given to each individual.

Data were generated from the binary mixed model (23) with the values of the parameters fixed at
ðb0,b1,b2,b3Þ ¼ ð0:25,0:25,�0:25,�0:10Þ and s2 ¼ 0:25. The initial data were obtained from k¼ 50 individuals with each
individual being observed at n0=2 design points x=0 and 10. Then under the sequential design scheme, data were augmented
by adding Poisson responses from k=50 clusters observed at each sequentially chosen design point from the design space
x 2 ½0,10�. Fig. 4 exhibits a plot of the determinant of the Fisher information against the design x for a typical set of initial data
generated from the Poisson mixed model (23). It is clear that the next sequential design point chosen by the D-optimal design
scheme is x=2, whereas the uniform design scheme chooses the design point x=5.

As Poisson mixed models use count data, fitting such models requires much more computation as compared to binary
mixed models. So in the simulations, we use 100 replications of datasets. As before, for each replication, we first generate
initial data and find the initial estimates of the model parameters. Based on these initial estimates, we choose a single design
point based on the D-optimal and the uniform design schemes. Fig. 5 displays the histogram of the D-optimal design points
chosen over the 100 simulation runs. We observe that the D-optimal design points are centered at the values 0, 2, and 6,

0
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Fig. 4. Determinant of Fisher information versus design x for a typical set of count data from a Poisson mixed model. Next design point is at x=2.
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Fig. 5. Histogram of optimal design points for a Poisson mixed model chosen over 100 simulation runs.

Table 2
Empirical coverages and lengths of 95% confidence intervals on the parameters of a Poisson mixed model (standard errors in parentheses).

Coefficients D-optimal Uniform

Coverage Length Coverage Length

b0 0.88 (0.0325) 0.7484 (0.0063) 0.87 (0.0336) 0.7920 (0.0100)

b1 0.89 (0.0313) 0.9747 (0.0058) 0.92 (0.0271) 1.0330 (0.0117)

b2 0.88 (0.0325) 0.2103 (0.0019) 0.82 (0.0384) 0.3496 (0.1530)

b3 0.89 (0.0313) 0.3740 (0.0197) 0.89 (0.0313) 0.6271 (0.2113)

s2 0.89 (0.0313) 0.5652 (0.0040) 0.94 (0.0237) 0.5927 (0.0180)

Augmented data were obtained from D-optimal and uniform designs.
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whereas the uniform design chooses the value 5. The average of the determinants of Fisher information matrices under the D-
optimal design was obtained as exp(22.98), whereas the average under the uniform design was obtained as exp(22.76). Here
also the D-optimal design outperforms the uniform design, as expected.

Table 2 reports the empirical coverages and their standard errors, and the mean lengths and standard errors of these
means for 95% individual normal confidence intervals on the model parameters. We observe that both designs provide
coverages that are generally lower than the nominal 95% confidence level. But here also the D-optimal design provides
uniformly smaller length as compared to the uniform designs. We find (not shown here) that the empirical coverages move
closer to the nominal level for larger sample size.

5. An example: epilepsy data

Thall and Vail (1990) presented and analyzed data from a clinical trial of 59 epileptics who were randomized to receive
either the antiepileptic drug progabide (trt=1) or a placebo (trt=0), as an adjuvant to standard chemotherapy. In the initial
experiment, the number of seizures during the two weeks before each of the four clinic visits was reported. The covariates
considered in the analysis were the number of baseline seizure count recorded in the preceding eight-week period, age in
years at entry into the trial, the binary indicators for the progabide (treatment) group, and visit for the four clinic visits.

Here we revisit the epilepsy data and consider analyzing them using a binary response variable y, which is defined to be 0 if
the number of seizures during a two-week period is less than or equal 10, and y is 1, otherwise. The covariates considered in
the analysis are: baseline seizures, ‘‘base’’, which is defined to be 0 if the number of baseline seizures in the preceding eight-
week period is less than or equal to 40, and it is 1, otherwise; binary indicators, ‘‘trt’’, for the treatment group; and ‘‘visit’’ (=2,
4, 6, and 8) representing the times (in weeks) of the four clinic visits. We consider a simple binary logistic regression model for
the conditional mean response, pit ¼ EðyitjuiÞ, in the form

log
pit

1�pit

� �
¼ b0þb1 baseiþb2 trtiþb3 visittþui, ð24Þ

for i=1,y,k with k=59 patients, and t=1,y,4 time points. Here ui represent the subject-specific random effects for the
patients, which are assumed to be independent normal with mean 0 and variance component s2. The ML estimates of
the model parameters are obtained as ðb̂0,b̂1,b̂2,b̂3,ŝÞ ¼ ð�3:849,6:912,�0:635,�0:286,3:121Þ with the corresponding
standard errors, s:e:ðb̂0,b̂1,b̂2,b̂3,ŝÞ ¼ ð1:439,1:862,1:214,0:137,0:945Þ. The seizure count appears to be decreasing over time.
The treatment (drug progabide) also reduces the number of seizures, but its effect is not statistically significant.

In the case of a recommendation by the analysts for further experimentation over a period of time, a natural question may
arise: When should the next visit be taken place in order to obtain more efficient estimates of the model parameters? Fig. 6
provides estimate of the determinant of the Fisher information over the design space, visit 2 ½9,25�, in weeks. Assuming that
the given model remains valid over this design space, the experimenter can plan the next visit after 23 weeks. However, if the
experimenter wishes to take the measurements earlier, for example over the design space, visit 2 ½9,16�, then week 16 may be
the optimal choice as indicated by the curve in Fig. 6.

An important issue in a sequential design scheme involves a stopping rule—the experimenter needs to determine how
many new data points should be generated in order to obtain reliable estimates of the model parameters. This may depend on
the experimenter’s point of view as well as on available experimental facilities. Under adequate experimental facilities, the
experimenter may generate new data based on the sequentially chosen design points until he/she is confident in the fitted
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Fig. 6. Choice of optimal time for epilepsy data. Next visit at Time=23 weeks.
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model, and has obtained satisfactory estimates of the model parameters. A workable rule may be to continue sampling until
the maximized Fisher information, anticipated at the next design point, reaches above a preassigned threshold.

6. Discussion

We have studied the performance of the locally D-optimal sequential designs for analyzing generalized linear mixed
models. We have demonstrated that one could attain considerable gain in efficiency from the maximum likelihood estimators
when data are augmented with the sequential design scheme rather than the much simpler uniform design scheme.
Although, in the simulations, we have explored the sequential design in the setting of repeated measurements from a fixed
group of patients, this sequential approach can also be applied to other settings of GLMMs for dependent data. For example,
we can consider obtaining additional data from new subjects (or patients) at each sequentially chosen design points. In such
cases, patients from a given medical practice (or cluster) can be correlated, and GLMMs can be used to describe the correlation
structure within a cluster.

We have explored the sequential design scheme in the case of a one-dimensional design space. However, the method can
be extended for choosing multidimensional sequential designs in a similar manner. For example, similarly to Dragalin et al.
(2008), we can consider adaptive sequential points over a two-dimensional design space for selecting dose combination of
two drugs when bivariate binary responses representing efficacy and toxicity of a drug are available. Here we can obtain two-
dimensional sequential designs by maximizing the determinant of the Fisher information matrix from a bivariate binary
regression model for the two response variables.
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