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a b s t r a c t

We study robust designs for generalized linear mixed models (GLMMs) with protections
against possible departures from underlying model assumptions. Among various types
of model departures, an imprecision in the assumed linear predictor or the link function
has a great impact on predicting the conditional mean response function in a GLMM.
We develop methods for constructing adaptive sequential designs when the fitted mean
response or the link function is possibly of an incorrect parametric form. We adopt the
maximum likelihood method for estimating the parameters in GLMMs and investigate
both I-optimal and D-optimal design criteria for the construction of robust sequential
designs. To study the empirical properties of these sequential designs, we ran a series of
simulations using both logistic and Poisson mixed models. As indicated in the simulation
results, the I-optimal design generally outperforms the D-optimal design for all scenarios
considered. Both designs are more efficient than the conventionally used uniform design
and the classical D-optimal design obtained under the assumption that the fitted models
are correctly specified. The proposed designs are also illustrated in an example using
actual data from a dose–response experiment.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this article, we discuss the construction of model-robust designs for generalized linear mixed models (GLMMs). The
majority of literature on model-robust designs are for linear models and a few are for generalized linear models (GLMs),
but little work has been done on model-robust designs for GLMMs. A possible reason for the dearth of work in this area
may be explained by (i) the complexity of the design problem even when the assumed model is exactly correct and (ii)
the computational difficulty involved in design problems for GLMMs.

With an awareness of the possibility that the assumed generalized linear model (GLM) might not be exactly correct,
Adewale and Wiens (2009) developed criteria to generate robust designs for logistic regression models with possible
inaccuracy in assumed linear predictors. In addition, Adewale and Xu (2010) discussed the construction of robust designs,
in general, for generalized linear models with protections against not only possible misspecification in assumed linear
predictors but also inadequately assumed link function and possible overdispersion.

Robust designs for GLMs were also investigated by Woods et al. (2006), and Li and Wiens (2011). Woods et al. (2006)
proposed a method for finding exact designs for experiments with generalized linear models, which uses a design criterion
that is robust to uncertainty in the link function, the linear predictor, or the regression parameters. Li and Wiens (2011)
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developed experimental designs for dose–response studies, which are robust against possibly misspecified link functions.
The proposed design minimizes the maximum mean squared error of the estimated dose required to attain a response in
certain percentage of the target population.

With the notion that the assumed model is correctly specified, Sinha and Xu (2011) constructed D-optimal sequential
designs for GLMMs, while Sinha and Xu (2016) further provided practical methods of design construction for GLMMs
which can overcome the computational intensiveness and difficulty involved in constructing optimal designs for the
GLMM. In this paper, we aim to investigate optimal and robust sequential designs for GLMMs under the consideration
of possible misspecifications in the assumed parametric forms. There are several scenarios in which GLMMs can be
potentially misspecified. These scenarios include GLMMs with (M1) misspecified linear predictors, (M2) imprecisions in
assumed link functions, (M3) overdispersion and (M4) misspecified distributions for random effects. Any combination
of departures from (M1)–(M4) may also occur. Our goal is to consider a design process which would be robust against
any of the aforementioned departures from the model assumptions. From our investigation, it appears that both (M1)
and (M2) have a greater impact on either predicting the mean response or estimating the fixed effects parameters in
GLMMs, while (M3) and (M4) have more impacts on the estimation of variance components. A common goal of optimal
designs for GLMMs is the prediction or estimation of the conditional mean response structure rather than the variability
across clusters. Therefore, we will focus on robust designs for GLMMs which can address (M1) and (M2) types of model
departures.

For (M1), either the covariates included in the systematic component or the linear predictor of a GLMM may not reflect
the influence of covariates correctly. This situation often occurs due to the use of an incorrectly specified functional form
of the covariates in the model or an omission of essential covariates from the regression model. For instance, Heagerty and
Kurland (2001) investigated the impact of model violations on the estimates of regression coefficients in GLMMs. Their
study indicates that there can be substantial bias in the conditionally specified regression estimators that may result
from using a misspecified random intercept model, where the true random effects distribution depends on measured
covariates or when there are autoregressive random effects. For (M2), the link function adopted in the assumed GLMM
model is often an approximation to the truth. For example, we often use the logit link in a binary regression model, which
is the canonical link for the binomial distribution, when, in fact, the complementary log–log link or the probit link may
be more appropriate. In an investigation of designs for nonlinear models, Sinha and Wiens (2002, p.602) have asserted
that ‘‘although the theoretical response functions are very similar in shape, and possibly indistinguishable if noisy data
must be relied upon, the appropriate designs can be quite dissimilar’’. Similarly, since the link function determines the
response function in a GLMM, the misspecification of the link function may also have an impact on the resulting optimal
designs.

Here we develop our robust methods for constructing adaptive sequential designs in GLMMs by addressing possible
imprecisions in the assumed linear predictors or link functions, where the maximum likelihood method is adopted for
fitting GLMMs. The rest of this paper is organized as follows. Section 2 introduces the model and notation, and reviews
the maximum likelihood (ML), score function and Fisher information for fitting a GLMM and for finding the asymptotic
variance–covariance matrix of the ML estimators. Section 3 discusses how the two types of departures (M1 and M2) are
related and what their impacts are on the estimates of the parameters in GLMMs or on the prediction of the overall mean
response function. Section 4 presents our proposed I-optimal and D-optimal designs and provides a sequential procedure
for finding robust designs in GLMMs. Section 5 explores the distributions of the optimal sequential design points attained
by our proposed methods using Monte Carlo simulations and compares the performance of the I- and D-optimal designs
with other competitors. Section 6 illustrates our proposed method using an example of a real dataset from a dose–response
experiment. Section 7 offers some concluding remarks. Derivations are provided in the Appendix.

2. Model and notation

Usual measures of performance of a design for a GLM or a GLMM depend on parameters being estimated. The most
common treatments for such dependency issue in a GLM are the methods of minimax (see Sitter, 1992; King and Wong,
2000), Bayesian (see Chaloner and Verdinelli, 1995; Zhang and Ye, 2014; and most recently Maram and Jafari, 2016),
and sequential designs (see Atkinson et al., 2007, § 17.7; Dror and Steinberg, 2008). In this paper, we adopt an adaptive
sequential approach to choose design points for the GLMM so that a measure of performance, which is evaluated at
estimates obtained from given data, can be maximized.

To define the GLMM, we consider a linear regression function (linear predictor) of a control covariate vector x in the
form

ηi = rt (xi)β + ztiu,

where r(xi) is a p-dimensional vector of regressors for the fixed effects and zi is a q-dimensional vector of regressors for
the random effects. Suppose conditional on the vector of random effects u, the elements of the observed response vector
y = (y1, . . . , yn)t are independent and follow a distribution in the exponential family:

fyi|u(y|u, β, φ) = exp
{
yθi − b(θi)

a(φ)
+ c(y, φ)

}
, (1)
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for some known functions a, b and c , where θi is related to the linear predictor ηi through a known link function, and φ

is a dispersion parameter. Note that for a canonical link as we consider in this paper, θi = ηi.
The vector of random effects u is assumed to follow a distribution:

u ∼ fu(u|α), (2)

depending on a vector of variance components α. A link function g relates the linear predictor ηi in (1) to the conditional
mean response Ey|u(yi|u) = µ(xi, β,u) = µ(rt (xi)β + ztiu) such that

ηi = g(µ(xi, β,u)),

where g is a monotonic and differentiable function. When g is the identity function and the response has the normal
distribution, we obtain the special class of linear mixed models.

From (1) and (2), the marginal likelihood function can be defined as

L(β, φ,α|y) =

∫
fy|u(y|u, β)fu(u|α)du =

∫ n∏
i=1

fyi|u(yi|u, β, φ)fu(u|α)du. (3)

The ML estimators of the parameters β, φ and α can be obtained by maximizing this likelihood function using suitable
numerical techniques.

For simplicity, we consider φ = 1, as this is the case for both binary and Poisson regression models. We note that
when the marginal distribution of y can be defined as a mixture as in (3), the classical ML estimating equations for β and
α take the form:

Eu|y

[
∂ log fy|u(y|u, β)

∂β

⏐⏐⏐⏐ y] = 0, (4)

and

Eu|y

[
∂ log fu(u|α)

∂α

⏐⏐⏐⏐ y] = 0, (5)

respectively, where Eu|y denotes the expectation with respect to the conditional distribution of u given y (see McCulloch
and Searle, 2001 for details). The ML estimators of β and α can be obtained by solving Eqs. (4) and (5) using some iterative
method, such as the Newton–Raphson method as described in McCulloch (1997).

The observed Fisher information can be obtained in a matrix form as

Io(β, α) =

[
Io11(β, α) Io12(β, α)
Io21(β, α) Io22(β, α)

]
, (6)

where the components of the information matrix are given by

−Io11(β, α) =
∂2 log L
∂β∂βt

= Eu|y

[
∂2 log fy|u(y|u, β)

∂β∂βt

⏐⏐⏐⏐ y]
+ Eu|y

[
∂ log fy|u(y|u, β)

∂β

∂ log fy|u(y|u, β)
∂βt

⏐⏐⏐⏐ y]
− Eu|y

[
∂ log fy|u(y|u, β)

∂β

⏐⏐⏐⏐ y] Eu|y [ ∂ log fy|u(y|u, β)
∂βt

⏐⏐⏐⏐ y] , (7)

−Io22(β, α) =
∂2 log L
∂α∂αt

= Eu|y

[
∂2 log fu(u|α)

∂α∂αt

⏐⏐⏐⏐ y]
+ Eu|y

[
∂ log fu(u|α)

∂α

∂ log fu(u|α)
∂αt

⏐⏐⏐⏐ y]
− Eu|y

[
∂ log fu(u|α)

∂α

⏐⏐⏐⏐ y] Eu|y [ ∂ log fu(u|α)
∂αt

⏐⏐⏐⏐ y] , (8)
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and

−Io12(β, α) = −Ito21(β, α) =
∂2 log L
∂β∂αt

= Eu|y

[
∂ log fy|u(y|u, β)

∂β

∂ log fu(u|α)
∂αt

⏐⏐⏐⏐ y]
− Eu|y

[
∂ log fy|u(y|u, β)

∂β

⏐⏐⏐⏐ y] Eu|y [ ∂ log fu(u|α)
∂αt

⏐⏐⏐⏐ y] . (9)

For the exponential family (1) with a canonical link, we can show that

Eu|y

[
∂ log fy|u(y|u, β)

∂β

⏐⏐⏐⏐ y] =

n∑
i=1

{yi − Eu|y(µ(xi, β,u)|y)}r(xi), (10)

and

Eu|y

[
∂2 log fy|u(y|u, β)

∂β∂βt

⏐⏐⏐⏐ y] = −

n∑
i=1

Eu|y[w(xi, β,u)|y]r(xi)rt (xi), (11)

where w(xi, β,u) = var(yi|u). The expected Fisher information can be obtained by taking the marginal expectations of
the expressions (7)–(9) with respect to the response vector y. After simplification, we can show that

Ey

[
−

∂2 log L
∂β∂βt

]
= Ey

[
Eu|y

[
∂ log fy|u(y|u, β)

∂β

⏐⏐⏐⏐ y] Eu|y [ ∂ log fy|u(y|u, β)
∂βt

⏐⏐⏐⏐ y]] , (12)

Ey

[
−

∂2 log L
∂α∂αt

]
= Ey

[
Eu|y

[
∂ log fu(u|α)

∂α

⏐⏐⏐⏐ y] Eu|y [ ∂ log fu(u|α)
∂αt

⏐⏐⏐⏐ y]] , (13)

and

Ey

[
−

∂2 log L
∂β∂αt

]
= Ey

[
Eu|y

[
∂ log fy|u(y|u, β)

∂β

⏐⏐⏐⏐ y] Eu|y [ ∂ log fu(u|α)
∂αt

⏐⏐⏐⏐ y]] . (14)

Let the model parameters be θ = (βt , αt )t . Then the expected full Fisher information becomes Ey[−∂2 log L/(∂θ∂θt )].
In this paper, our goal of the study is to determine if there is a significant trend in the mean response with respect to

the covariates rather than the variability of such trend across the clusters. This implies that we are looking for the best
designs which can produce the most accuracy in estimating β rather than α.

3. Possible departures from model assumptions

The major contribution of the paper is the development of an optimal design strategy by taking possible model
departures into account at the experimental design stage. We consider a situation where the experimenter seeks
protection against possible misspecifications in the assumed model form. As discussed in Section 1, the following two
types of departures from an assumed GLMM an experimenter should be aware of, and they can be noted as follows:

• (M1) Misspecified linear predictor: When the true linear predictor is η = rt (x)β + ztu + h (x), with a contamination
function h (x) accounting for possible additional effects of covariates.

• (M2) Imprecisions in the assumed link function: When the true link function is different from the assumed one.

3.1. Misspecified linear predictor (M1)

Formally, when (M1) appears in a GLMM, the true but unknown model belongs to a class of alternative models with
the conditional mean

Ey|u (yi|u) = µu (ηT ,i|u
)
, ηT ,i = rt (xi)β + ztiu + h(xi), (15)

assuming h(xi) is a small contaminant, u∼fu(u|α) with α being independent of xi, and Eu (u) = 0. However, the
experimenter imprecisely fits a GLMM with the conditional mean

µu (ηi|u) = µ
(
rt (xi)β + ztiu

)
. (16)

As a result, the working likelihood function is adopted as in (3).
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Let µ (xi, β) = Eu (µu (ηi|u)) =
∫
u µ

(
rt (xi)β + ztiu

)
fu(u|α)du be the fitted marginal mean response. Then the true

marginal mean response can be expressed by

Ey(yi|xi) = Eu
(
µu (ηT ,i|u

))
=

∫
µ
(
rt (xi)β + ztiu + h(xi)

)
fu(u|α)du

=

∫ [
µ(rt (xi)β + ztiu) + µ′(rt (xi)β + ztiu)h(xi) + o(h(xi))

]
fu(u|α)du

= µ (xi, β) + d(xi, β),

where

d(xi, β) =

∫ [
µ′(rt (xi)β + ztiu)h(xi) + o(h(xi))

]
fu(u|α)du

= Ey(yi|xi) − µ (xi, β) .

We also define the ‘‘true’’ β0 through minimization of integrated squared discrepancy

β0 = argmin
∫
S
d2(x, β)dx. (17)

This implies that∫
S
q(x, β0)d(x, β0)dx = 0,

with q(x, β) = ∂µ(x, β)/∂β. Then the true marginal mean is given by

Ey(yi|xi) = µ(xi, β0) + d(xi, β0).

3.2. Misspecified link function (M2)

3.2.1. Link function misspecification in a logistic mixed model
Uncertainty in the choice of a link function employed in a GLM or a GLMM often occurs (see discussion in Pregibon,

1980, and Ponce de Leon and Atkinson, 1993, for instance). The optimal design problems for GLMs with misspecified link
functions have been discussed previously. For example, Biedermann et al. (2006) introduce a robust approach in which
the experimenter considers a finite set of plausible link functions with the uncertainties in the suitability of each of
them quantified with known probabilities. The probabilities reflect the preference that the experimenter attaches to each
link function. The resulting robust criterion is a weighted average of the respective criterion corresponding to each link
function. Later, Adewale and Xu (2010) take a different approach given that the experimenter intends to fit the logistic
model (a binomial model with the logit link). However, the robust designs are proposed to protect against the possibility
of the imprecision in the logit link specified, within a parametric link function family. In the present paper, we adopt a
similar approach for GLMMs.

Assume that both the true but unknown link function and the fitted logit link function belong to a generalized family
defined by

g
(
µB, λ

)
= log

[{(
1

1 − µB

)λ

− 1

}/
λ

]
, (λ ≥ 0) , (18)

with a link parameter λ. This family encompasses the logit and the complementary log–log links as special cases. The
logit link corresponds to λ = 1 while the complementary log–log corresponds to limλ→0. Although some link functions
such as the probit link may not be exactly expressed as a member of the family (18), these can be approximated to a
particular member of the family. For instance, the probit link function is quite close to the member with λ = 1/3. In
reality, the true link function corresponds to an unknown value of λ that might be different from the fitted one, such as
the logit link with λ = 1.

In generalized linear mixed modeling, the link function connects the systematic component (the linear predictor) of
the model to the mean response via

η = g
(
µB, λ

)
,

where η is the linear predictor representing the mixed effects in the model on a linear scale. The reasonable choice of link
functions is suggested by the distribution of the response. For example, g

(
µB, λ

)
is suggested as the logit function when

the response takes the logistic distribution function, and as the complementary log–log link when it takes the extreme
value distribution. We considered the following Taylor’s expansion of (18) about the parameter value λ = 1 corresponding
to the logit link that the experimenter contemplates fitting. That is,

η = log
(

µB

1 − µB

)
+ g∗ (x; λ) ,
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with µB
= Ey|u(y|u) and

g∗ (x; λ) =
∂g
∂λ

⏐⏐⏐⏐
λ=1

(λ − 1) + o(λ − 1). (19)

Thus the link misspecification problem may be cast as a linear predictor misspecification problem. The true mean response
µB

i = Ey|u(yi|u) can be expressed as a function of the linear predictor

ηi = rt (xi)β + ztiu + g∗(xi, λ),

where the contamination function is given by

h (xi, λ) = log
(

µB

1 − µB

)
−
(
rt (xi)β + ztiu

)
= −g∗ (xi, λ) . (20)

3.2.2. Link function misspecification in a Poisson mixed model
Similarly, in designing an experiment for a Poisson mixed model with a possibly misspecified link function, we may

employ a link function class where both the true link function and the fitted canonical link function are included. Consider
the parameterized family of link functions defined by

g
(
µP , λ

)
=

{(
µP
)λ

, λ ̸= 0
logµP , λ = 0

,

where λ is the link parameter. The log link corresponds to λ = 0. The strategy is to linearize this generalized link function
by expanding it around λ = 0. Then the true linear predictor can be written as

ηi = rt (xi)β + ztiu+h(xi, λ),

with the contamination function h (x, λ) being

h (x, λ) = −
∂g (x, λ)

∂λ

⏐⏐⏐⏐
λ=0

λ + o(λ) ≈ −λ logµP . (21)

As discussed above, we note that the link function misspecification in a GLMM can be treated as a linear predictor
misspecification problem. This aligns with the work of Pregibon (1980) indicating that the wrong link function is a
systematic misspecification of the model. Therefore, an (M2) problem can be treated as an (M1) problem.

3.3. General results

This subsection provides general results for the asymptotic bias and asymptotic variance of the maximum likelihood
estimators of the fixed effects parameters in approximately specified models with awareness of any possible M1 and/or
M2 departures.

From (3), the marginal log-likelihood function l can be defined as

l (β) = log
∫ [

n∏
i=1

fyi|u(yi|u, β, φ)

]
fu(u|α)du

= log
∫ [

n∏
i=1

exp
{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}]
fu(u|α)du. (22)

Letting lui = (yiθi − b(θi))/a(φ) + c(yi, φ), we employ the chain rule to obtain the first derivative of the log-likelihood
l, given by

∂ l(β)
∂β

=

∫ [
∂

∂β
fy|u(y|u, β)

]
fu(u|α)du

/
fy(y)

=

∫ [
∂

∂β
log fy|u(y|u, β)

]
fu|y(u|y)du

= Eu|y

(
∂

∂β

n∑
i=1

log fyi|u(yi|u, β)

⏐⏐⏐⏐⏐ y
)

=

n∑
i=1

Eu|y

(
∂ lui
∂β

⏐⏐⏐⏐ y)

=

n∑
i=1

Eu|y

(
∂ lui
∂θi

∂θi

dµu
i

∂µu
i

∂ηi

∂ηi

∂β

⏐⏐⏐⏐ y) ,
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where ∂ lui /∂θi = (yi − b′ (θi))/a (φ). Using µu
i = b′ (θi) and var (yi|u) = a (φ) b′′ (θi), we have

∂ lui
∂θi

= (yi − µu
i )/a (φ) ,

∂µu
i

dθi
= b′′ (θi) = var (yi|u) /a (φ) , and

∂ηi

∂β
= r(xi) since ηi = rt (xi)β + ztiu, as assumed.

Thus

l′(β) =
∂ l (β)

∂β
=

n∑
i=1

Eu|y

(
yi − µu

i

var (yi|u)

∂µu
i

∂ηi
r(xi)

⏐⏐⏐⏐ y) ,

and

l′′(β) =
∂2l(β)
∂β∂βt =

n∑
i=1

Eu|y

(
∂2lui

∂β∂βt

⏐⏐⏐⏐ y)+ Eu|y

(
n∑

i=1

∂ lui
∂β

n∑
i=1

∂ lui
∂βt

⏐⏐⏐⏐⏐ y
)

− Eu|y

(
n∑

i=1

∂ lui
∂β

⏐⏐⏐⏐⏐ y
)
Eu|y

(
n∑

i=1

∂ lui
∂βt

⏐⏐⏐⏐⏐ y
)

,

where
∂2lui

∂β∂βt =
∂µu

i /∂ηi

var(yi|u)
r(xi)

∂(yi − µu
i )

∂βt +
(
yi − µu

i

)
r(xi)

∂

∂βt

{
∂µu

i /∂ηi

var(yi|u)

}
.

We also have
∂(yi − µu

i )
∂βt = −

∂µu
i

∂ηi
rt (xi),

and for a canonical model (which often the fitted model is),

θi = ηi, and
∂

∂βt

{
∂µu

i /∂ηi

var (yi)

}
= 0.

Thus we have
∂ lui
∂β

=

(
yi − µu

i

a (φ)

)
r(xi),

and the second derivative for the possibly misspecified canonical model is

∂2lui
∂β∂βt = −

[(
∂µu

i /∂ηi
)2

var (yi)

]
r(xi)rt (xi) = −

[
∂µu

i /∂ηi

a (φ)

]
r(xi)rt (xi).

With a sample size of n, the following result can be established for a general GLMM in the form of (15) with possible
(M1) and/or (M2) types of model misspecifications:

Theorem 1. For a GLMM with a canonical link function, in the form of (15) with possible model misspecification, when the
experimenter fits model (16) imprecisely, and assuming that the observed responses are independent and follow a distribution
with a density of the form (1), the maximum likelihood estimator β̂n of the model parameter vector β0 from the misspecified
model has the following properties:

√
n
(
β̂n − β0

)
has an asymptotic multivariate normal distribution, and the asymptotic

bias and asymptotic variance–covariance matrix of β̂n are given by

bias
(
β̂
)

= E
(
β̂ − β0

)
= H−1

n (β0)bn(β0) + o
(
n−1/2) , (23)

var
(√

n
(
β̂ − β0

))
= H−1

n (β0) + o (1) , (24)

respectively, for functions bn(β0) = (1/n)Ey[l′(β0)] and Hn(β0) = −(1/n)Ey[l′′(β0)].
The proof of the theorem is given in the Appendix.

4. Optimal sequential design

As concluded in the previous section, the link function misspecification problems (M2) can be treated as a linear
predictor misspecification (M1) problem. Therefore, starting this section, we will focus on robust designs for GLMMs
with protections against possible imprecisions in the assumed linear predictors: Scenario (M1).
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Fig. 1. True versus fitted models. Left panel — (logistic model) plot of true marginal mean response µ∗(x, δ) = Eu[exp(δ0+δ1x+δ2x2+u)/(1+exp(δ0+
δ1x+δ2x2 +u))] with δ = (δ0, δ1, δ2)t = (−2, 0.5, 0.5)t and fitted marginal mean response µ(x, β0) = Eu[exp(β00 +β10x+u)/(1+exp(β00 +β10x+u))]
with β0 = (β00, β10)t = (−2.87, 1.94)t . Right panel — (Poisson model) plot of true marginal mean response µ∗(x, δ) = Eu[exp(δ0+δ1x+δ2x/(1+x)+u)]
with δ = (δ0, δ1, δ2)t = (0.5, 0.3, 3)t and fitted marginal mean response µ(x, β0) = Eu[exp(β00 + β10x + u)] with β0 = (β00, β10)t = (1.613, 0.705)t .
Parameters β0 are obtained by minimizing the integrated squared distance d(β) =

∫ 3
0 {µ∗(x, δ) − µ(x, β)}2 dx with respect to β over design space

x ∈ [0, 3].

4.1. Examples

We first take two most commonly used GLMMs to illustrate the impact of misspecified linear predictors. These two
specific examples will be used through the present and next sections.

As the first example, we suppose that an experimenter considers fitting a binary logistic mixed model with a single
covariate x and a random intercept u, given by

logit{µu
L (x, u, β)} = β0 + β1x + u, (25)

over the design space x ∈ [0, 3]. However, the true model is given by

logit{µ∗u
L (u, x, δ)} = δ0 + δ1x + δ2x2 + u,

where u ∼ N(0, 0.25). Fig. 1 (left) graphs a plot of two marginal means Eu[µ∗u
L (u, x, δ)] with parameters δ = (−2, 0.5, 0.5)t

and Eu[µu
L (x, u, β0)] with parameters β0 = (−2.87, 1.94)t obtained by minimizing the squared distance between two

marginal response functions as defined in (17), namely,

β0 = argmin
β

d(x, β) = argmin
β

∫ 3

0

{
Eu(µ∗u

L (u, x, δ)) − Eu(µu
L (x, u, β))

}2 dx
= (−2.87, 1.94)t .

As the second example, we consider a Poisson mixed regression model

log{µu
P (x, u, β)} = β0 + β1x + u,

over the design space x ∈ [0, 3], whereas the true mean response is given by

log{µ∗u
P (u, x, δ)} = δ0 + δ1x + δ2

(
x

1 + x

)
+ u,

where u ∼ N(0, 0.25). Fig. 1 (right) shows a plot of the marginal means Eu[µ∗u
P (u, x, δ)] with parameters δ = (0.5, 0.3, 3)t

and Eu[µ
u
P (x, u, β0)] with parameters β0 = (1.613, 0.705)t whose values also minimize the overall squared discrepancy

d(x, β).
As noted in this graph, particularly the one with logistic regression (on the left), the most obvious discrepancy d(x, β)

appears in two ending regions, around [0, 0.5] and [2.0, 3.0], as well as the middle area around 1.5. We would expect
the robust design with protection on such discrepancy due to the misspecification in assumed linear predictor used for
modeling the marginal mean. On the other hand, the plot for Poisson regression (on the right), the most discrepancy
d(x, β) appears in two regions, around [0, 0.5], and [1.5, 2.5]. We would expect that the robust design can help with the
protection against the discrepancy in these areas due to the same reason.
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Fig. 2. True and estimated discrepancies for a sample dataset from a binary mixed model. Left panel — scatter plot of observed proportions of
successes at design points x = 0, 1, 2, 3 along with a fitted logistic model. Middle panel — plot of true and estimated discrepancies d(x, β); dashed
line represents the true discrepancy function, red circles represent observed discrepancies at four design points and solid line an estimated smooth
discrepancy function. Right panel — plot of I-optimality loss function over design space x ∈ [0, 3]; minimum loss is located around x = 0.5 by a red
circle indicating an I-optimal design point.

For illustration, we generate 200 observations from N = 50 subjects, with ni = 4 observations from the ith subject
(i = 1, . . . ,N) obtained at four equally spaced design points xi = 0, 1, 2, 3 over the design space [0, 3] using the logistic
model

logit{µ∗u(u, x, δ)} = −2 + 0.5x + 0.5x2 + u, u ∼ N(0, 0.25).

However, model (25) is fitted using the maximum likelihood method. Fig. 2 exhibits the true and estimated discrepancies
for fitting the incorrect binary mixed model (25). The left panel shows the scatter plot of the observed proportions of
successes at the four design points x = 0, 1, 2, 3 along with the fitted logistic model. The middle panel shows the plot
of true and estimated discrepancies d(x, β), where the dashed line represents the true discrepancy function, red circles
represent observed discrepancies at four design points and solid line an estimated smooth discrepancy function. We
investigate the empirical properties of the smoothed residuals in approximating d(x, β) shown in Fig. 2. Here the values
of ∫ 3

0
q(x, β̂)d̂(x, β̂)dx

appear to be (−0.018, −0.028), which are close to zero as expected. For larger samples (not shown here), the values were
found to be even closer to zero. The right panel of Fig. 2 shows the plot of I-optimality loss function, as defined in Eq. (27),
over the design space x ∈ [0, 3], where the minimum loss is located around x = 0.5 by a red circle indicating an I-optimal
design point.

4.2. Design criteria and sequential design procedure

The classical optimal design strategies are often developed by maximizing a function of the Fisher information matrix.
However, when the fitted model is misspecified, as investigated in Section 2, the ML estimators of the model parameters
are generally biased. Consequently, the optimal design criteria should be based on the asymptotic integrated mean squared
error (IMSE) of prediction defined by∫

S
E
[{

µ

(
x, β̂n

)
− E(y|x)

}2]
dx (26)

=

∫
S
E
[{

(β̂n − β0)
tq(x, β0) − d(x, β0)

}2]
dx + o

(
n−1/2)

≈ trace{MSEn(β0)A(β0)} +

∫
S
d2(x, β0)dx,

where MSEn is the MSE of β̂n and A(β) =
∫
S q(x, β)q

t (x, β)dx.
We consider two design criteria, I-optimality and D-optimality, where the I-optimal design obtains design points by

minimizing the loss function

LI = trace{MSEn(β0)A(β0)}, (27)
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and the D-optimal design obtains design points by minimizing the loss function

LD =
[
det{MSEn(β0)}

]1/p
, (28)

where

MSEn(β) = (1/n)H−1
n (β) + H−1

n (β)bn(β)bt
n(β)H

−1
n (β),

with

bn(β) = (1/n)
n∑

i=1

d(xi, β)r(xi),

and

Hn(β) = (1/n)Ey

[{
n∑

i=1

(yi − Eu|y(µu
i |y))r(xi)

}{
n∑

i=1

(yi − Eu|y(µu
i |y))r(xi)

}t]
.

For choosing the optimal designs, the calculation of Hn(β) requires intensive computation, as it involves numerical
integration at each design point in the design space. To reduce the computational burden, we further approximate the
function Hn(β) by

H̃n(β) = (1/n)Ey

[{
n∑

i=1

(yi − Eu(µu
i ))r(xi)

}{
n∑

i=1

(yi − Eu(µu
i ))r(xi)

}t]
.

In our experience with the empirical study, the optimal design criterion does not heavily rely on the conditional
expectation Eu|y(µu

i |y) as used in the function Hn(β) above. The I-optimal loss functions based on Hn(β) and H̃n(β) are
similar in shape and both provide design points that are generally close to each other. We should also point out that we
adopt this approximation only at the design stage of the analysis for computational simplicity. However, the variance of
the ML estimators is obtained from the exact Fisher information derived from the full likelihood function.

Finally, the discrepancy function d(xi, β) is approximated by a nonparametric smoothing technique similar to Sinha
and Wiens (2002). Specifically, assuming that multiple responses {yij, j = 1, . . . , ni} are obtained at the ith distinct design
point xi (i = 1, 2, . . .), so that n =

∑
i ni, the discrepancies d(xi, β) are first estimated by the means of the ‘‘residuals’’

rij = yij −µ(xi, β̂), j = 1, . . . , ni. These means are then smoothed to get estimates of the discrepancy d(x, β) at any design
point x.

We adopt a sequential approach to the design problem assuming that the experimenter initially obtains data from
a group of individuals measured at n0 pre-selected design points xi (i = 1, . . . , n0). Subsequent data are then observed
at n1 new design points xi (i = n0 + 1, n0 + 2, . . . , n0 + n1) determined sequentially by minimizing either (27) or (28)
in order to obtain the I-optimal or D-optimal sequential designs, respectively. Then the resulting designs shall be robust
against possible model departures. Our proposed algorithm for constructing such robust I-optimal or D-optimal sequential
designs can be described as follows:

1. Given the initial data {(yi, xi); i = 1, . . . , n0}, find the ML estimates θ̂0 = (β̂
t
0, α̂

t
0)

t of (βt , αt )t by solving the
estimating Eqs. (4) and (5) simultaneously.

2. Based on these initial estimates and a candidate design point x, calculate the design criteria LI or LD as

LI = trace{MSEn0+1(β̂0)A(β̂0)}, (29)

or

LD =

[
det{MSEn0+1(β̂0)}

]
1/p. (30)

3. Determine a new design point x∗

n0+1 by minimizing (29) or (30):

x∗

n0+1 = argmin
x

[
trace{MSEn0+1(β̂0)A(β̂0)}

]
(31)

or

x∗

n0+1 = argmin
x

{[
det{MSEn0+1(β̂0)}

]1/p}
. (32)

4. Update the parameter estimates θ̂ using the augmented data with the observations obtained at the new design point
x∗

n0+1, and then select the next sequential design point based on the new set of estimates, and so on.
5. Repeat Steps 2–4 to choose n1 design points, x∗

n0+1, . . . , x
∗
n0+n1 , sequentially using this algorithm.
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An important issue of a sequential design procedure is to set up a stopping rule. The number of new design points
should be determined in order to obtain reliable estimates of the model parameters. In reality, it often depends on both the
experimenter’s point of view on estimation precision and available experimental resource. If the experimental resource is
not limited, then the experimenter may continue the process of generating observations based on the sequentially chosen
optimal design points until satisfactory estimates of the model parameters are attained. A workable rule is to continue
sampling until the variances of the ML estimates fall below a predetermined threshold.

5. Simulation study

In this section, we present results from a series of simulations in order to explore the properties of the ML estimators
obtained under the sequential design schemes proposed earlier. We also carry out a comparative study based on the
following three classes of designs:

• Class I: Proposed I-optimal or robust D-optimal designs, where initial data at n0 locations are augmented by an
additional k observations at each of n1 new locations chosen sequentially by numerically minimizing LI or LD.

• Class II: Conventionally used uniform designs, where initial data at n0 locations are augmented by an additional k
observations at each of n1 new locations. In this case, the experimental points are uniformly distributed throughout
the design space, where a total of n0 + n1 locations are equally spaced over [0, 3], and for smaller values of n0 + n1
these may form a subset of the locations. Thus these design points are sequential but nonadaptive.

• Class III: Classical optimal design for a GLMM without consideration of model departures. It obtains classical
D-optimal designs sequentially using the same procedure as described in the previous section. So these designs
are sequential and adaptive, but are obtained by maximizing the determinant of Ey[−∂2 log L/(∂β∂βt )] instead of
minimizing LI or LD.

In the next two subsections, we study empirical properties of the aforementioned three classes of designs using both
binary logistic and Poisson mixed models.

5.1. Simulation results for logistic mixed models

Here initial data were generated from the ‘‘true’’ binary mixed model

yij|ui ∼ ind. Bernoulli(p∗

ij),

logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui,

ui ∼ ind. N(0, σ 2
u ), (33)

for i = 1, . . . , k, j = 1, . . . , n0 with n0 = 4 initial design points {xj : 0, 1, 2, 3}. The model parameters were fixed
at (δ0, δ1, δ2) = (−2, δ1, 0.5) and σ 2

u = 0.25. The fitted model assumed a working binary mixed model logit(pij) =

β0 + β1xj + ui with ui ∼ ind. N(0, σ 2
u ). In this case, the marginal likelihood function for (β, σ 2

u ) takes the form

L(β, σ 2
u |y) =

k∏
i=1

∫ n0∏
j=1

fyij|ui (yij|ui, β)fui (ui|σ
2
u )dui.

For calculating the design criteria LI and LD in Eqs. (27)–(28), the functions bn(β) and Hn(β) may be expressed as

bn(β) = (k/n)
n0∑
j=1

d(xj, β)xj,

and

Hn(β) = (1/n)
k∑

i=1

Ey

⎡⎣⎧⎨⎩
n0∑
j=1

(yij − Eu|y(µu
ij|yi))xj

⎫⎬⎭
⎧⎨⎩

n0∑
j=1

(yij − Eu|y(µu
ij|yi))xj

⎫⎬⎭
t⎤⎦ ,

with n = n0k, n0 = 4, yi = (yi1, . . . , yin0 )
t , xj = (1, xj)t , and µu

ij = pij.
We found four new design points xj (j = 5, . . . , 8) in x ∈ [0, 3] by each of the three design schemes I–III described

earlier. Fig. 3 exhibits histograms of the sequentially chosen I-optimal design points xj (j = 5, . . . , 8) for 1000 replicates
of datasets obtained from the above working binary mixed model with the number of clusters k = 25 and parameter
δ1 = 0.5. We repeat the above for other combinations of (k, δ1) = (50, 0.5), (25, 0.2), and (50, 0.2). The results are shown
in the Appendix in Figs. B.1–B.3.

From the histogram plots, we note that the modes of the first four I-optimal sequential design points often alternately
appear at the regions where the least model discrepancies appear (see the plot on the left in Fig. 1, when δ1 = 0.5), even
more so for a larger sample size with k = 50. As expected, the I-optimal design appears to provide protections against the
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Fig. 3. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a binary mixed model. Initial
data were generated from the true logistic model logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a
simple binary model logit(pij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (−2, 0.5, 0.5) and σ 2
u = 0.25. Number

of clusters k = 25.

model discrepancies considered in the simulations. The histogram plots also indicate that: (i) the distributions of these
four sequential points are complementary to each other in a consecutive way; (ii) the patterns of the distributions are
quite similar for different values of k but with the same value of δ1 and the distribution is less uniform with a larger value
of k; (iii) in contrast, the distribution patterns are quite different for the different values of δ1 even with the same value of
k and the distribution with δ1 = 0.2 is much less uniform than the corresponding distribution with δ1 = 0.5; and (iv) for
all the cases considered above, the very first sequential points selected appear to be more uniform than their followers.

To compare the performance of the three classes of designs, we draw scatter plots of
√
n × IMSE versus n for

n = n0k, (n0 + 1)k, . . . , (n0 + n1)k. Figs. 4 and 5 exhibit plots of adjusted empirical values of
√
n × IMSE against n for

1000 replicates of datasets obtained from the above binary mixed model. The IMSEs were rescaled by dividing them with
the overall mean IMSE for all designs. The plots are shown for δ1 = 0.5 and δ1 = 0.2 in Figs. 4 and 5, respectively, with
k = 25 on the left and k = 50 on the right. We note that for all the cases considered in our simulations, the proposed
I-optimal robust designs outperform very much all their competitors and for most cases their efficiency gains grow higher
as more new sequentially selected points are added in.

It is also interesting to note that for a larger sample size with k = 50 the naive D-optimal design that ignores the model
discrepancy appears to perform better than the ‘‘robust’’ D-optimal design. This seemingly unexpected pattern is difficult
to interpret, as it appears only in the case of binary data. Our proposed I-optimal robust design, however, outperforms
all its competitors for all sample sizes considered.
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Fig. 4. Plots of adjusted empirical values of
√
n × IMSE versus n for 1000 replicates of datasets from binary mixed models, where IMSE =∫

S Ey[(µ(x, β̂n) − Ey(y|x))2]dx and values of n were chosen as n = n0k, (n0 + 1)k, . . . , (n0 + n1)k with n0 = 4, n1 = 4. Initial data were generated
from the true logistic model logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a simple binary model
logit(pij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (−2, 0.5, 0.5) and σ 2
u = 0.25. Results are shown for naive

D-optimal, uniform, I-optimal and D-optimal designs. Left panel — number of clusters k = 25. Right panel — number of clusters k = 50.

Fig. 5. Plots of adjusted empirical values of
√
n × IMSE versus n for 1000 replicates of datasets from binary mixed models, where IMSE =∫

S Ey[(µ(x, β̂n) − Ey(y|x))2]dx and values of n were chosen as n = n0k, (n0 + 1)k, . . . , (n0 + n1)k with n0 = 4, n1 = 4. Initial data were generated
from the true logistic model logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a simple binary model
logit(pij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (−2, 0.2, 0.5) and σ 2
u = 0.25. Results are shown for naive

D-optimal, uniform, I-optimal and D-optimal designs. Left panel — number of clusters k = 25. Right panel — number of clusters k = 50.

5.2. Simulation results for Poisson mixed models

Here initial data were generated from the ‘‘true’’ Poisson mixed model

yij|ui ∼ ind. Poisson(λ∗

ij),

log(λ∗

ij) = δ0 + δ1xj + δ2

(
xj

1 + xj

)
+ ui,

ui ∼ ind. N(0, σ 2
u ), (34)

for i = 1, . . . , k, j = 1, . . . , n0 with n0 = 4 initial design points {xj : 0, 1, 2, 3}. The model parameters were fixed at
(δ0, δ1, δ2) = (0.5, δ1, 3) and σ 2

u = 0.25. The fitted model assumes a working Poisson mixed model log(λij) = β0+β1xj+ui
with ui ∼ ind. N(0, σ 2

u ). As before, we found four new design points xj (j = 5, . . . , 8) in x ∈ [0, 3] by each of the three
design schemes. Fig. 6 exhibits histograms of four sequentially chosen I-optimal design points xj (j = 5, . . . , 8) for 1000
replicates of datasets obtained from the above working Poisson mixed model with the number of clusters k = 25 and
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Fig. 6. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a Poisson mixed model. Initial
data were generated from the true Poisson model log(λ∗

ij) = δ0 +δ1xj +δ2xj/(1+xj)+ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes
a simple Poisson model log(λij) = β0 +β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (0.5, 0.1, 3) and σ 2
u = 0.25. Number

of clusters k = 25.

parameter δ1 = 0.1. We repeat the above for other combinations of (k, δ1) = (50, 0.1), (25, 0.3), and (50, 0.3). The results
are shown in the Appendix in Figs. B.4–B.6.

The histogram plots reveal that the modes of the first four I-optimal design sequential points often alternately appear
at the regions where the least model discrepancies appear (see the plot on the right in Fig. 1, when δ1 = 0.3), even more
so for a larger number of clusters, k = 50. Also, as expected, the proposed robust design appears to provide protections
against the model discrepancies considered in the simulation study. In addition, similar to the logistic model, we also note
that the distributions of the four sequential design points are still complementary to each other in a consecutive way,
but the patterns of the distributions are now quite similar for different values of k and δ1. In comparison, the resulting
design points distributions are much less uniform than those for the logistic cases, and the protection areas of the robust
designs for a Poisson mixed model do not seem as accurate as that for a logistic mixed model.

We also compare the performance of the three classes of designs for the Poisson mixed model. Figs. 7 and 8 exhibit
plots of adjusted empirical values of

√
n × IMSE against n for 1000 replicates of datasets. The values of the IMSEs were

rescaled by dividing them with their overall mean IMSE from all designs. The plots are shown for δ1 = 0.1 and δ1 = 0.3
in Figs. 7 and 8, respectively, with k = 25 on the left and k = 50 on the right. We note that (i) for all cases, both I-optimal
and D-optimal robust designs outperform the classical D-optimal designs where the misspecification in the model was
not taken into account; (ii) for most cases, both our proposed I-optimal and D-optimal robust designs outperform the
uniform designs; (iii) the performances of the I-optimal and D-optimal designs are quite similar; and (iv) the relative
efficiency gains of I-optimal and D-optimal robust designs over the classical D-optimal designs grow higher as more new
sequentially selected points are added in, whereas the gains relative to the uniform designs grow less.

6. An example: Quinoline data

Breslow (1984) presented and analyzed data from an Ames Salmonella reverse mutagenicity assay. The data (shown in
Table 1) were obtained from a test with Salmonella strain TA98 and induced rat liver homogenate S9. Dimethyl sulfoxide
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Fig. 7. Plots of adjusted empirical values of
√
n × IMSE versus n for 1000 replicates of datasets from Poisson mixed models, where IMSE =∫

S Ey[(µ(x, β̂n) − Ey(y|x))2]dx and values of n were chosen as n = n0k, (n0 + 1)k, . . . , (n0 + n1)k with n0 = 4, n1 = 4. Initial data were generated
from the true Poisson model log(λ∗

ij) = δ0 + δ1xj + δ2xj/(1 + xj) + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a simple Poisson
model log(λij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (0.5, 0.1, 3) and σ 2
u = 0.25. Results are shown for

naive D-optimal, uniform, I-optimal and D-optimal designs. Left panel — number of clusters k = 25. Right panel — number of clusters k = 50.

Fig. 8. Plots of adjusted empirical values of
√
n × IMSE versus n for 1000 replicates of datasets from Poisson mixed models, where IMSE =∫

S Ey[(µ(x, β̂n) − Ey(y|x))2]dx and values of n were chosen as n = n0k, (n0 + 1)k, . . . , (n0 + n1)k with n0 = 4, n1 = 4. Initial data were generated
from the true Poisson model log(λ∗

ij) = δ0 + δ1xj + δ2xj/(1 + xj) + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a simple Poisson
model log(λij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (0.5, 0.3, 3) and σ 2
u = 0.25. Results are shown for

naive D-optimal, uniform, I-optimal and D-optimal designs. Left panel — number of clusters k = 25. Right panel — number of clusters k = 50.

Table 1
Quinoline dataa .
Revertant colonies with increasing quinoline

0 10 33 100 333 1000

15 16 16 27 33 20
21 18 26 41 38 27
29 21 33 60 41 42

aSource: Breslow (1984).

was the solvent control, where each of the six doses was replicated three times. The number of revertant colonies was
observed on each of three replicate plates tested at each of six dose levels of quinoline.

We revisit the quinoline data and consider analyzing them using a count response variable yij representing the number
of revertant colonies with an associated covariate xj = dosej/100. We consider a working Poisson mixed model for the
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Fig. 9. Plots of IMSE loss functions over the design space x ∈ [0, 10]. Left panel: I-optimal loss function; Middle panel: D-optimal loss function;
Right panel: Naive D-optimal loss function. All loss functions show a minimum loss at the highest dose level x = 10.

Fig. B.1. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a binary mixed model. Initial
data were generated from the true logistic model logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a
simple binary model logit(pij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (−2, 0.5, 0.5) and σ 2
u = 0.25. Number

of clusters k = 50.
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Fig. B.2. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a binary mixed model. Initial
data were generated from the true logistic model logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a
simple binary model logit(pij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (−2, 0.2, 0.5) and σ 2
u = 0.25. Number

of clusters k = 25.

conditional mean response E(yij|uij) in the form

yij|uij ∼ ind. Poisson(λij), i = 1, . . . , k, j = 1, . . . , n0,

log(λij) = β0 + β1xj + uij,

uij ∼ ind. N(0, σ 2
u ), (35)

for k = 3 and n0 = 6. With the initial data taken as in Table 1 and with awareness of possible inaccuracy in the
assumed model, we aim to optimally choose a new design point (dose level) with 3 replications using our proposed
robust sequential approach within the design space x ∈ [0, 10]. We note that here the model setting is slightly different
than those used in the simulations, where the whole set of clusters was replicated at a given design point. In this example,
the given dataset contains no clusters but replicates of observations at different dose levels. Both D-optimal and I-optimal
robust sequential designs choose the maximum dose x = 10 as the next sequential dose level, as can be seen from Fig. 9
depicting the plot of IMSE loss function over the design space x ∈ [0, 10]. Both loss functions give minimum values at
the maximum dose level. It is also interesting to note that although the naive D-optimal design chooses the optimal dose
x = 10, but the shape of the loss function is different than the I-optimal and D-optimal loss functions.

7. Discussion and conclusion

A primary focus of regression analysis is often on response estimation or prediction. In the presence of uncertainty
in the fitted response model as considered in the paper, a robust design strategy should focus on the minimization
of the ‘‘average prediction error’’ over a given design space when the marginal mean response E(y|x) is predicted by
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Fig. B.3. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a binary mixed model. Initial
data were generated from the true logistic model logit(p∗

ij) = δ0 + δ1xj + δ2x2j + ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes a
simple binary model logit(pij) = β0 + β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (−2, 0.2, 0.5) and σ 2
u = 0.25. Number

of clusters k = 50.

µ(x, β̂). So we use IMSE as the measure of performance for comparing different designs. It is important to note that
the proposed robust I-optimal design criterion is ‘‘optimal’’ under misspecified models. In the case of correctly specified
models, however, the D-optimal design still performs better than the I-optimal design as per the IMSE measure, as
indicated by Sinha and Wiens (2002).

In our algorithm for the design construction as described in Section 4.2, we point out that the initial data are augmented
at each of the new design points chosen sequentially, and parameters are re-estimated for the augmented data after
finding each sequential design point. In our simulations, we considered drawing only 4 sequential design points to reduce
the computational burden involving a large number of data sets. In practice, for a given set of initial data, we may continue
drawing new sequential design points until satisfactory estimates of the model parameters are found.

For both binary and Poisson mixed models as considered in our empirical study, the extent of the model misspeci-
fication is not very large, as illustrated in Fig. 1. Standard goodness-of-fit or lack of fit tests often fail to identify such
model discrepancies especially when the sample size is small. As noted by Sinha and Wiens (2002), in robust analysis a
common strategy is to perform both the robust analysis and a classical analysis that is valid only for the fitted model.
A general agreement between these analyses may be taken as evidence in favor of the fitted model. When there is
disagreement in these analyses, we can perform model diagnostics to determine where and how the disagreement occurs.
The discrepancies used in the estimation of MSE may be thought of as indicators of model misspecification. At each stage
of the sequential design, we are able to assess the extent of model misspecification from the estimated discrepancies.
In case of correctly specified models, the estimated discrepancies should be close to zero. Large estimated discrepancies
would lead us to think of an alternative model. However, here our goal is to adopt a robust design that leads to a minimum
loss when the fitted model is approximately correct.
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Fig. B.4. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a Poisson mixed model. Initial
data were generated from the true Poisson model log(λ∗

ij) = δ0 +δ1xj +δ2xj/(1+xj)+ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes
a simple Poisson model log(λij) = β0 +β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (0.5, 0.1, 3) and σ 2
u = 0.25. Number

of clusters k = 50.

We have studied the performance of the D- and I-optimal sequential designs for analyzing generalized linear mixed
models with possible misspecification of the mean response function. Both design criteria require intensive computation.
Some approximate method has been investigated to reduce the computational difficulties. We have carried out simulations
for both binary and Poisson mixed models. The simulation results have shown that the I-optimal design is generally
more efficient than the D-optimal design for all scenarios under misspecified logistic models. Also, the I-optimal design
appears to be as efficient as or more efficient than the D-optimal design under misspecified Poisson regression models. The
efficiencies of the proposed robust designs, their corresponding classical optimal designs obtained without awareness of
model misspecifications, and the sequential uniform designs have also been compared through the simulations. The results
have demonstrated that one could attain considerable gain in efficiency from the maximum likelihood estimators when
data are augmented with the proposed I-optimal robust sequential design scheme rather than the classical D-optimal
designs and the conventionally used uniform designs.

We also investigated the ‘‘classical’’ or naive I-optimal design without regard for the bias or robustness when analyzing
binary and Poisson mixed models. Our study (not shown here) suggests that the naive I-optimal design is generally less
efficient than the naive D-optimal design under misspecified response models.

In our empirical study with simulations, the results of the Poisson mixed model appeared to be more clear cut as
compared to the binary mixed model. This is probably due to the fact that for finite samples, the ML estimators of the
Poisson regression model for count data are generally more stable than those of the logistic regression model for binary
data in terms of the variability in estimation.

In this paper, we have explored the sequential design schemes in the case of a one-dimensional design space. The
proposed I-optimal and D-optimal designs require intensive computation involving integrations with respect to the
random effects. To reduce the computational burden, we used a slightly modified version of the two design criteria, as
described in Section 4.2. This approximation drastically reduced the computation time (roughly by 90%) when conducting
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Fig. B.5. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a Poisson mixed model. Initial
data were generated from the true Poisson model log(λ∗

ij) = δ0 +δ1xj +δ2xj/(1+xj)+ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes
a simple Poisson model log(λij) = β0 +β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (0.5, 0.3, 3) and σ 2
u = 0.25. Number

of clusters k = 25.

our simulation study. The proposed design scheme can be extended for choosing multidimensional sequential designs in
a similar manner. The choice of multidimensional design naturally would require more computation, as it involves the
calculation of the Fisher information at each possible location in the multidimensional design space.
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Appendix A. Proof of Theorem 1

Under conditions as in Fahrmeir (1990), the maximum likelihood estimator exists and is consistent for GLMs, and
the score function is op

(
n−1/2

)
. This conclusion applies to the maximum likelihood estimators obtained by the marginal

log-likelihood function l as defined in (22) for GLMMs specified by (1) and (2). Recall that in the case of the GLMM, the
score function is given by

l′(β) =
∂ l (β)

∂β
=

n∑
i=1

Eu|y

(
yi − µu

i

var(yi|u)
∂µu

i

∂ηi

⏐⏐⏐⏐ y) r(xi).
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Fig. B.6. Histograms of four sequentially chosen I-optimal design points for 1000 replicates of datasets obtained from a Poisson mixed model. Initial
data were generated from the true Poisson model log(λ∗

ij) = δ0 +δ1xj +δ2xj/(1+xj)+ui, (i = 1, . . . , k, j = 1, . . . , n0), where the fitted model assumes
a simple Poisson model log(λij) = β0 +β1xj + ui with ui ∼ ind. N(0, σ 2

u ). Parameters were fixed at (δ0, δ1, δ2) = (0.5, 0.3, 3) and σ 2
u = 0.25. Number

of clusters k = 50.

An expansion of l′j(β) = ∂ l (β) /∂βj around β0 gives

l′j(β) = l′j(β0) +

∑
k

(
βk − β0,k

)
l′′jk(β0) +

1
2

∑
k

∑
l

(
βk − β0,k

) (
βl − β0,l

)
l′′′jkl(β∗),

where l′j(β0) is the value of l′j(β) evaluated at β0,

l′′jk(β) =
∂2l (β)

∂βj∂βk
,

l′′′jkl(β) =
∂3l (β)

∂βj∂βk∂βl
,

βj and β0,j are the jth terms of the vectors β and β0, respectively, and β∗ is a point on the line segment connecting β and
β0. If we replace β by β̂, the above expansion gives

√
n
∑
k

(
β̂k − β0,k

)[1
n
l′′jk(β0) +

1
2n

∑
l

(
β̂l − β0,l

)
l′′′jkl(β∗)

]
= −

1
√
n
l′j(β0).

For the exponential family, the third derivatives l′′′jkl(β∗) are bounded (Kredler, 1986). Using the consistency of β̂, we have

1
n
l′′jk(β0) +

1
2n

∑
l

(
β̂l − β0,l

)
l′′′jkl(β∗)

p
−→ −Hjk,
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where Hjk is the (j, k)th element of the matrix Hn(β0) = −(1/n)Ey[l′′(β0)]. Thus the limiting distribution of
√
n
(
β̂ − β0

)
is that of the solution of the equations∑

k

Hjk
√
n
(
β̂k − β0,k

)
=

1
√
n
l′j(β0),

i.e., the limiting distribution of
√
n
(
β̂ − β0

)
is given by H−1

n (β0)(1/
√
n)l′(β0). Using the central limit theorem, we can

argue that (1/
√
n)l′(β0) has an approximate multivariate normal distribution with the mean

1
√
n

n∑
i=1

Ey

[
Eu|y

(
yi − µu

i

var(yi|u)
∂µu

i

∂ηi

⏐⏐⏐⏐ y)] r(xi) =
√
nbn

(
β0
)
,

and variance–covariance matrix Hn(β0). It follows that
√
n
(
β̂ − β0

)
∼ AN

(√
nH−1

n (β0)bn(β0),H
−1
n (β0)

)
.

Appendix B. Additional plots from simulations: Figs. B.1–B.6

See Figs. B.1–B.6.
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