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Abstract In this article, we discuss the construction of robust designs for heteroscedastic wavelet regression
models when the assumed models are possibly contaminated over two different neighbourhoods: G1, and G2.
Our main findings are: (1) A recursive formula for constructing D-optimal designs under G1; (2) Equivalency
of Q-optimal and A-optimal designs under both G1 and G2; (3) D-optimal robust designs under G2; and (4)
Analytic forms for A- and Q-optimal robust design densities under G2. Several examples are given for the
comparison, and the results demonstrate that our designs are efficient.
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1 Introduction

This paper aims to investigate the optimal designs of experiments for wavelet regression models. The designs
constructed are robust against the approximation in the assumed finite terms of wavelets. Minimax approach
is adapted to address the worst possible situation within a contamination class. Two different contamination
classes are discussed in this paper.
Wavelet regression models are widely used in many areas, such as spectroscopy (Brown, Fearn, and

Vannucci, 2001), signal processing (Robert and Richard, 1999), and feature detection in earth science (Murat
and Necati, 2006). The development of wavelet theory has also extended its applications in fast algorithms for
integral transforms in numerical analysis (see Alpert, 1992). Another application is in function representation
methods, and such application has stimulated interest in wavelet approximations of regression response
functions for the analysis of experimental data (see Oyet and Wiens (2000) and the references cited in).
Sprang (1989) discussed Haar’s wavelet and indicated that Haar’s wavelet, as a piecewise constant exam-

ple, "reveals a lot with no deep analysis" (p. 615). The reasons we utilize the Haar’s wavelet in this paper are:
First, piecewise linear regression is the simplest in terms of implementation and is often used with acceptable
accuracy; and second, the function that we frequently encounter may not even be continuous. Capilla (2005)
also gave the real world examples of Haar wavelet application in detecting microseismic signal arrivals
Optimal design for wavelet regression is a relatively new topic developed in the field of statistics. Some

efficient designs for certain specific wavelet regression models have been investigated by Herzberg and Traves
(1994), Xie (2002), and Tian and Herzberg (2006A), among others. Herzberg and Traves (1994) discussed
D-optimal designs for the Haar wavelet model and Xie (2002) provided the D-optimal designs for b-adic Haar
wavelet models; more recently, Tian and Herzberg (2006A) constructed D-optimal designs for a combined
linear and Haar wavelet function.
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Traditionally, an optimal design is chosen in order that the covariance matrix of the estimates can
be minimized, resulting in the minimum of the covariance matrix means the minimum of an appropriate
real-valued function of the covariance matrix. There are three major criteria for optimal designs, namely
D-optimal, A-optimal and Q-optimal, which are to minimize the determinant, the trace and the average
prediction of covariance matrix, and it has been shown that an optimal design is efficient to estimate the
parameters if the assumed model is correct. However, Box and Draper (1959) exposed the risks of designing
a regression experiment which assumes the fitted model is exactly correct; they found that very small
deviations from an assumed model can eliminate any supposed gains arising from the use of a design which
minimizes variance alone. Tian and Herzberg (2006B) considered a Haar wavelet approximation model with
heteroscedasticity, and obtained the A-minimax designs over an L1 type of contamination class; yet, they
left a rather open problem on obtaining D-minimax designs. Oyet and Wiens (2000) considered a wavelet
approximation model but over an L2 type of contamination class, and obtained continuous A-, D-, and Q-
minimax designs for the model with homoscedasticity.
In this paper,

(1). We first tackle the unsolved problem pointed out in Tian and Herzberg (2006B): D- and Q- minimax
design construction for a Haar wavelet approximation model with a possible contaminant which is a
member of an L1 type of contamination class.

(2). Then, we discuss the D-, A-, and Q-optimal robust designs under a much broader L2 type of contamination
class. We extend the work of Oyet and Wiens (2000) on homoscedastic wavelet models to heteroscedastic
wavelet models.

The rest of this article is organized as follow: some mathematical preliminaries are detailed in §2; the
designs for (1) are provided in §3; the designs for (2) are given in §4; design implementation and comparison
of the robust designs obtained in this paper to commonly used uniform designs, as well as a simulation study,
are demonstrated with several examples in §5; and concluding remarks are presented in §6. All derivations
are provided in an appendix.

2 Preliminaries and Notation

A wavelet is a mathematical function used to divide a given function or continuous-time signal into different
scale components. As Tian and Herzberg (2006B) indicated, a wavelet system can be considered as a basis
for representing square integrable functions in different scales, in a similar way to that of polynomials or
trigonometric functions. Haar (1910) discovered a wavelet system on the real line, and its orthogonal basis
in L2 (R) is generated by the Haar scaling function φ (x) and the Haar primary wavelet ψ (x), where

φ (x) =

½
1 (0 ≤ x < 1)
0 otherwise,

and

ψ (x) =

⎧⎨⎩ 1
¡
0 ≤ x < 1

2

¢
−1

¡
1
2 ≤ x < 1

¢
0 otherwise.

Haar wavelets are the simplest wavelets: they only have three possible values on the real line R and each
of them is a step function. For reader’s convenience, we also keep the same notions in both this and next
section as used in Tian and Herzberg (2006B). Herzberg and Traves (1994) used a Haar wavelet function
to fit the model. Under the least squares estimation, the authors proved the following result: for the Haar
wavelet model of order m

E (y (x)) = β0 +
mX
j=0

2j−1X
k=0

βjkψjk (x) , (1)
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with

ψjk (x) = 2
j
2ψ
¡
2jx− k

¢
=

⎧⎨⎩ 2
j
2 if k

2j ≤ x < k
2j +

1
2j+1 ,

−2 j2 if k
2j +

1
2j+1 ≤ x < k

2j +
1
2j ,

0 otherwise,

as Haar wavelets with j = 0, · · ·m; k = 0, · · · , 2j − 1, any design which concentrates mass 2−(m+1) in the
2m+1 intervals nh

2−(m+1)i, 2−(m+1) (i+ 1)
´o

i=0,1,··· ,2m+1−1
,

is D-optimal design, where β0, βjk
¡
j = 0, · · ·m; k = 0, · · · , 2j − 1

¢
are unknown parameters and are to be

estimated by the least squares method.
As in Daubechies (1992), we approximate the regression response by finitely many dominant terms of its

wavelet representation, with remainder g (x). The true model may be written as

y (x) = β0 +
mX
j=0

2j−1X
k=0

βjkψjk (x) + g (x) + ε (x) , (2)

with

ε (x) ∈ Υ =
©
E {ε (x)} = 0, V ar {ε (x)} = σ2π−1 (x) , Cov {ε (x) , ε (x0)} = 0 for x 6= x0

ª
, (3)

where π (x) is a known efficiency function, and g (x) is an unknown contaminant to the fitted model (1).
The fitted response (1) is typically acknowledged to be only an approximation for a x belonging to a
bounded design space S. The least squares estimates β̂ of β =

¡
β0, β00, β10, ..., βm0, ..., βm,2m−1

¢T
and

Ŷ = β̂0 +
mX
j=0

2j−1X
k=0

β̂jkψjk (x) of E(Y |x) are possibly biased if the response is misspecified. In this situation,

robust designs can play an important role in choosing optimal design points x1,..., xn ∈ S so that estimates
β̂ and Ŷ remain relatively efficient, with a small bias caused by the model misspecification.
In the next three sections, we will present solutions to (1) and (2) stated in §1.

3 Robust Designs for the Approximate Haar wavelet Models over G1

In order to control the magnitude on the bias, as considered in Tian and Herzberg (2006B), the contamination
function g (x) in this section is assumed to be an unknown member of contamination class G1 where

G1 =

½
g (x) | |g (x)| ≤ τ ,

Z 1

0

g (x) dx = 0 and
Z 1

0

ψjk (x) g (x) dx = 0

¾
. (4)

The first condition in G1 is a magnitude restriction on g(x). The other two conditions are requirements of
orthogonality.
We consider a Haar wavelet approximation model (2), where ε (x) ∈ Υ , and g (x) ∈ G1. Tian and

Herzberg (2006B) have shown that the mean squared error matrix for the ordinary least squares estimator is
a function of contaminant g (x) and design ξ with support points (x1, ..., x2m+1) and corresponding allocations
(n1, ..., n2m+1). The mean squared error matrix is

M (g,ξ) = 2−2(m+1)XT
H

¡
σ2L−1 + gBg

T
B

¢
XH, (5)

where

XH =

⎡⎢⎢⎢⎣
1 ψ00 (u1) · · · ψm,2m−1 (u1)
1 ψ00 (u2) · · · ψm,2m−1 (u2)
...

...
. . .

...
1 ψ00 (u2m+1) · · · ψm,2m−1 (u2m+1)

⎤⎥⎥⎥⎦
2m+1,2m+1

, ui =
(i− 1)
2m+1

, (6)
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gB =

⎡⎢⎢⎢⎢⎣
[π(x11)g(x11)+···+π(x1n1)g(x1n1)]

l1
...

π(x2m+1,1)g(x2m+1,1)+···+π x2m+1,n
2m+1

g x2m+1,n
2m+1

l2m+1

⎤⎥⎥⎥⎥⎦ , and (7)

L = diag {l1, l2, · · · , l2m+1} , with li = π (xi1) + · · ·+ π (xini) . (8)

3.1 D-minimax Designs for the Approximate Haar wavelet Models over G1

The D-criterion for the approximately linear Haar wavelet model is the determinant of the MSE matrix,
namely ΦD (g,ξ) = |M (g,ξ)| . By dividing the design space [0, 1) into 2m+1 subintervals as

χi =

∙
i− 1
2m+1

,
i

2m+1

¶
, i = 1, · · · , 2m+1,

we suppose that the efficiency function π (x) is known, and that the maximum value of π (x) on χi is Zi¡
i = 1, · · · , 2m+1

¢
. Then, the maximum of ΦD (g,ξ) over G1 attains its minimum value when the design

support points xij = x(i)
¡
i = 1, · · · , 2m+1; j = 1, · · · , ni

¢
, where x(i) are the points such that π

¡
x(i)

¢
= Zi

and n1, n2, · · · , n2m+1 are positive real numbers that minimize the maximum of ΦD (g,ξ) over g ∈ G1, which
is:

max
g∈G1

ΦD (g,ξ) =
σ2

m+2−2τ2

(2m+1)2
m+1

Z1Z2 · · ·Z2m+1

σ2τ−2 + n1Z1 + · · ·+ n2m+1Z2m+1

n1n2 · · ·n2m+1

, (9)

subject to n1 + n2 + · · ·+ n2m+1 = n. Tian and Herzberg (2006B) also indicate that the theoretical solution
of n1, n2, · · · , n2m+1 is difficult to obtain although the minimum value of max

g∈G1

ΦD (g,ξ) exists. The following

section will tackle this open problem of obtaining the optimal allocations n0is. Because of the fact that σ, τ ,m,
and Zi are all known positive numbers, our target of obtaining the minimum of max

g∈G1

ΦD (g, ξ) becomes finding

the minimum of σ2τ−2+n1Z1+···+n2m+1Z2m+1

n1n2···n2m+1
subject to n1 + n2 + · · · + n2m+1 = n. We have the following

theorem:

Theorem 1 Suppose that the efficiency function π (x) is known and the maximum value of π (x) on χi
is Zi

¡
i = 1, · · · , 2m+1

¢
. Then the minimum of (9) is attained when the design support points xij = x(i)¡

i = 1, · · · , 2m+1; j = 1, · · · , ni
¢
, where x(i) are the points such that π

¡
x(i)

¢
= Zi, and n1, n2, · · · , n2m+1 are

positive real numbers which satisfy

nk
n
=

vuuuut σ2τ−2

2m+1Y
j=1,j 6=k

nj

+
2m+1X

i=1,i6=k

Zi
2m+1Y

j=1,j 6=i,j 6=k

nj

2m+1X
k=1

vuuuut σ2τ−2

2m+1Y
j=1,j 6=k

nj

+
2m+1X

i=1,i6=k

Zi
2m+1Y

j=1,j 6=i,j 6=k

nj

, k = 1, 2, · · · , 2m+1. (10)

Let ν = σ2

nτ2 representing the relative importance of variance versus bias. For a simple case when the
model (2) with ν ¿ n1

n Z1 + · · ·+ n2m+1

n Z2m+1 , we have

max
g∈G1

ΦD (g,ξ) ≈
σ2

m+2−2τ2

(2m+1)2
m+1

Z1Z2 · · ·Z2m+1

n1Z1 + · · ·+ n2m+1Z2m+1

n1n2 · · ·n2m+1

. (11)

Consequently, we have
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Corollary 1 When ν is very small, the minimum value of (11) is attained when the design points xij = x(i)¡
i = 1, · · · , 2m+1; j = 1, · · · , ni

¢
, where x(i) are the points such that π

¡
x(i)

¢
= Zi, and n1, n2, · · · , n2m+1 are

positive real numbers that satisfy

nk
n
=

vuuuut
2m+1X

i=1,i6=k

Zi
2m+1Y

j=1,j 6=i,j 6=k

nj

2m+1X
k=1

vuuuut
2m+1X

i=1,i6=k

Zi
2m+1Y

j=1,j 6=i,j 6=k

nj

, k = 1, 2, · · · , 2m+1. (12)

The algorithm for obtaining the D-minimax designs using (10) or (12) is as follows:

1. Give the starting design for ni’s: n
(0)
1 , n

(0)
2 , · · · , n(0)2m+1 . For example, uniform design can be used as a

starting design.
2. Use the recursive formula (10) or (12) depending on the value of ν to calculate n

(1)
1 by plugging in

n
(0)
1 , n

(0)
2 , · · · , n(0)2m+1 , and replace n

(0)
1 with n

(1)
1 , then use the recursive formula to calculate n

(1)
2 by plug-

ging in n
(1)
1 , n

(0)
2 , · · · , n(0)2m+1 , and replace n

(0)
2 with n

(1)
2 . Repeat this procedure to get n

(1)
3 , · · · , n(1)2m+1−1,

then replace n(0)i

¡
i = 3, · · · , 2m+1 − 1

¢
with n(1)i

¡
i = 3, · · · , 2m+1 − 1

¢
. Finally, replace n(0)2m+1 with n

(1)
2m+1 =

n−
2m+1−1X
i=1

n
(1)
i . This concludes the first round of our process.

3. For the kth round, we have n(k)1 , n
(k)
2 , · · · , n(k)2m+1 . Then check if

max
i

Ã¯̄̄̄
¯n(k)i − n

(k−1)
i

n

¯̄̄̄
¯
!
< δ, (13)

is true, where δ is a given constant (we use δ = 1
2m+1∗1000 for our examples). We stop our process and

output n
(k)
1

n ,
n
(k)
2

n , · · · , n
(k)

2m+1

n as the final result if (13) is satisfied; otherwise we repeat steps 2 and 3.

Example 1: When m = 2, the approximate Haar wavelet model (2) is

y (x) = β0 + β00ψ00 (x) + β10ψ10 (x) + β11ψ11 (x) + β20ψ20 (x)

+β21ψ21 (x) + β22ψ22 (x) + β23ψ23 (x) + g (x) + ε (x) ,

where g (x) ∈ G1 and the error term ε (x) ∈ Υ. Let γ be an arbitrary small positive number. If π (x) = x
and ν can be neglected, then the D-minimax design for the model is

ξD∗ ≈

⎛⎝ 1
8 − γ 2

8 − γ 3
8 − γ 4

8 − γ 5
8 − γ 6

8 − γ 7
8 − γ 8

8 − γ

0.138 0.134 0.130 0.126 0.123 0.119 0.116 0.113

⎞⎠ ;
If ν can not be neglected, suppose ν = 1, then the D-minimax design for the model is

ξD ≈

⎛⎝ 1
8 − γ 2

8 − γ 3
8 − γ 4

8 − γ 5
8 − γ 6

8 − γ 7
8 − γ 8

8 − γ

0.129 0.128 0.127 0.126 0.124 0.123 0.122 0.121

⎞⎠ .
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When π (x) = x2 and ν can be neglected, then the D-minimax design for the model is

ξD∗ ≈

⎛⎝ 1
8 − γ 2

8 − γ 3
8 − γ 4

8 − γ 5
8 − γ 6

8 − γ 7
8 − γ 8

8 − γ

0.142 0.139 0.135 0.130 0.124 0.117 0.110 0.103

⎞⎠ ;
If ν can not be neglected, suppose ν = 1, then the D-minimax design for the model is

ξD ≈

⎛⎝ 1
8 − γ 2

8 − γ 3
8 − γ 4

8 − γ 5
8 − γ 6

8 − γ 7
8 − γ 8

8 − γ

0.129 0.129 0.128 0.127 0.125 0.123 0.121 0.118

⎞⎠ .

When π (x) = exp (−x) and ν can be neglected, then the D-minimax design for the model is

ξD∗ ≈

⎛⎝ 0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

0.118 0.120 0.122 0.124 0.126 0.129 0.130 0.131

⎞⎠ ;
If ν can not be neglected, suppose ν = 1, then the D-minimax design is

ξD ≈

⎛⎝ 0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

0.122 0.123 0.124 0.125 0.126 0.126 0.127 0.127

⎞⎠ .

We note that the convergences in obtaining D-minimax designs have been reached very quickly in all
situations we have tested for various efficiency functions, and various values of , even with a larger m. A
list of convergence times is given in Table 1.

3.2 Equivalency of Q-minimax and A-minimax designs for the Approximate Haar wavelet Models over G1

Q-minimax designs are sensible when we are interested in prediction. In this case, the problem becomes how
to find the best estimation of the response function; the corresponding loss function is the average mean
squared prediction error:

ΦQ (g,ξ) =

Z
x∈S

z (x)
T
M (g, ξ) z (x) dx.

With (5), (6), (7) and (8) in the previous subsection, we have

ΦQ (g,ξ) = 2
−2(m+1)

⎡⎣ σ2
R 1
0

h
z (x)

T
XT
HL
−1XHz (x)

i
dx

+
R 1
0

h
z (x)

T
XT
HgBg

T
BXHz (x)

i
dx

⎤⎦ , (14)

where

z (x) =

⎛⎜⎜⎜⎝
1

ψ00 (x)
...

ψm,2m−1 (x)

⎞⎟⎟⎟⎠ .

We note that Z 1

0

z (x) g (x) dx = 0,
Z 1

0

z (x) zT (x) dx = I.
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Let Q1 =
R 1
0

h
z (x)T XT

Hσ
2L−1XHz (x)

i
dx, and Q2 =

R 1
0

h
z (x)T XT

HgBg
T
BXHz (x)

i
dx. We have

max
g∈G1

ΦQ (g,ξ) = 2
−2(m+1)

∙
Q1 + max

g∈G1

Q2

¸
= 2−2(m+1)

∙
Q1 + max

g∈G1

gTB

µZ 1

0

XHz (x) z (x)
T
XT
Hdx

¶
gB

¸
= 2−2(m+1)

∙
Q1 + 2

m+1τ2λmax

µZ 1

0

XHz (x) z (x)
T
XT
Hdx

¶¸
,

with

XHz (x) =

⎛⎜⎜⎜⎝
1 + ψ00 (u1)ψ00 (x) + · · ·+ ψm,2m−1 (u1)ψm,2m−1 (x)
1 + ψ00 (u2)ψ00 (x) + · · ·+ ψm,2m−1 (u2)ψm,2m−1 (x)

...
1 + ψ00 (u2m+1)ψ00 (x) + · · ·+ ψm,2m−1 (u2m+1)ψm,2m−1 (x)

⎞⎟⎟⎟⎠ .

Suppose s, w = 1, 2, · · · , 2m+1, we have XHz (x) z (x)
T XT

H being a 2m+1 × 2m+1 matrix with elements of

as,w =

⎧⎨⎩
⎛⎝1 + mX

j=0

2j−1X
k=0

ψjk (us)ψjk (x)

⎞⎠⎛⎝1 + mX
j=0

2j−1X
k=0

ψjk (uw)ψjk (x)

⎞⎠⎫⎬⎭
s,w

,

and

λmax

µZ 1

0

XHz (x) z (x)
T XT

Hdx

¶

= λmax

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
2m+1 0 0 0
0 2m+1 0 0

0 0
. . . 0

0 0 0 2m+1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 2m+1,

where
R 1
0
XHz (x) z (x)

T
XT
Hdx is the corresponding 2

m+1×2m+1 matrix with elements of
R 1
0
as,wdx. There-

fore,

max
g∈G1

ΦQ (g,ξ) = 2
−2(m+1)

Z 1

0

h
z (x)T XT

Hσ
2L−1XHz (x)

i
dx+ τ2.

Now, our goal of minimizing max
g∈G1

ΦQ (g,ξ) becomes to minimize
R 1
0

h
z (x)T XT

HL
−1XHz (x)

i
dx. The Q-

minimax designs can be constructed by the following theorem:

Theorem 2 The minimum of mean squared prediction error, max
g∈G1

ΦQ (g,ξ) , attains its minimum value when

the design points xij = x(i)
¡
i = 1, · · · , 2m+1; j = 1, · · · , ni

¢
, where x(i) are the points such that π

¡
x(i)

¢
= Zi,

and n1, n2, · · · , n2m+1 are positive real numbers which satisfy

nk
n
=

q
1
Zk

2m+1P
i=1

³q
1
Zi

´ , k = 1, 2, · · · , 2m+1. (15)

Comparing to the A-minimax design found in Tian and Herzberg (2006B), Q-minimax designs are equiv-
alent to A-optimal designs for the model (2) over G1.
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4 Robust Designs for the Approximate Haar wavelet Models over G2

In this section, we consider a broader contamination class G2 below

G2 =

½
g (x) |

Z 1

0

g2 (x) dx ≤ τ2,

Z 1

0

g (x) dx = 0 and
Z 1

0

ψjk (x) g (x) dx = 0

¾
. (16)

This class was first adopted first by Huber (1975), and the virtues of this class have further been indicated
in Wiens (1992). We now discuss the D-, A-, and Q-optimal robust designs under G2.
Oyet and Wiens (2000) consider the approximate wavelet model (2) with g (x) ∈ G2 and homogenous

errors satisfy:
E (ε) = 0, V ar (ε) = σ2 and Cov [ε (x) , ε (x0)] = 0 for x 6= x0.

They indicate that, under G2, only absolute continuous designs ξ (x) have finite maximum loss; and also
conclude (i) that the A-, D-, Q- minimax robust designs are equivalent, and (ii) that uniform design is the
minimax robust design for all these three loss functions. In this section, we extend the results of Oyet and
Wiens (2000) for the case of homoscedasticity to the case of heteroscedasticity. We consider the model (2)
with g (x) ∈ G2, and heterogeneous errors ε (x) ∈ Υ instead.
We make use of the following matrices and vectors:

B = B (ξ) =
XT
HXH

n
=
1

n

nX
i=1

z (xi) z
T (xi) =

Z
S

z (x) zT (x) dξ (x) ,

b = b (g, ξ) =
XT
Hg (x)

n
=
1

n

nX
i=1

z (xi) g (xi) =

Z
S

z (x) g (x) dξ (x) ,

D =

Z
S

z (x) zT (x)π−1 (x) dξ (x) .

In this case, the loss functions for the approximate Haar wavelet models become

(1). Q-optimal:

Qloss = bTB−2b+
σ2

n
trB−1DB−1 +

Z
S

g2 (x) dx.

(2). A-optimal:

Aloss = trM (g, ξ)

= bTB−2b+
σ2

n
trB−1DB−1.

(3). D-optimal:

Dloss = |M (g, ξ)|

=

¯̄̄̄
B−1bbTB−1 +

σ2

n
B−1DB−1

¯̄̄̄
=
¯̄
B−1

¯̄
·
¯̄̄̄
bbT +

σ2

n
D

¯̄̄̄
·
¯̄
B−1

¯̄

=

µ
σ2

n

¶2m+1

⎡⎢⎢⎣
∙
1 +

³
σ2

n

´−1
bTD−1b

¸
|D|

|B|2

⎤⎥⎥⎦ .
Let m (x) = ξ0 (x), C =

R
S
z (x) zT (x)m2 (x)dx, K =

R
S
z (x) zT (x)m2 (x)dx − B2 = C − B2. The

maxima of the loss functions above are stated in the following theorem:
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Theorem 3 For model (2), the maxima of Qloss, Aloss and Dloss over G2 are

max
g∈G2

Qloss = τ2
¡
λmax

¡
KB−2

¢
+ ν · trB−1DB−1 + 1

¢
, (17)

max
g∈G2

Aloss = τ2
¡
λmax

¡
KB−2

¢
+ ν · trB−1DB−1

¢
, (18)

and

max
g∈G2

Dloss = τ2
µ
σ2

n

¶2m+1−1Ã£
ν + λmax

¡
KD−1

¢¤
|D|

|B|2

!
. (19)

It can be shown that for heteroscedasticity case, the D-minimax design is not equivalent to A- or Q-
minimax design any more. In addition, neither A- nor Q- minimax design is a uniform design. The following
theorem provides the D-minimax, A-minimax, and Q-minimax designs for heteroscedasticity case.

Theorem 4 (1) D-minimax designs over G2 are uniform designs, that is m(x) = 1; (2) The densities of
A-minimax and Q-minimax designs have the same form as:

m (x) =

µ
zT (x)Mz (x)− π−1 (x) zT (x)Nz (x)− t

zT (x)Uz (x)

¶+
, (20)

where three symmetric constant matricesM,N (≥ 0),U (> 0) and a scalar t can be determined by minimizing
(18).

Because uniform design is a D-minimax design and z (x) does not change when xi ∈ χi =
£
i−1
2m+1 ,

i
2m+1

¢
,

we simply choose xi = i−1
2m+1 +

1
2m+2 , i = 1, 2, · · · , 2m+1. In this case, we give the following examples.

Example 3: We have

ξD =

⎛⎝ 1
8

3
8

5
8

7
8

1
4

1
4

1
4

1
4

⎞⎠
for m = 1, while

ξD =

⎛⎝ 1
16

3
16

5
16

7
16

9
16

11
16

13
16

15
16

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

⎞⎠ ,

when m = 2.

We note that for multiwavelet approximation or regression approximated by other wavelets with higher
vanishing moments, the analytic form of (20) stays the same except with different z(x).
Numerical solutions on A-minimax and Q-minimax designs will be discussed in the next section.

5 Examples, Discretization, and Simulation

The general theoretical solution on A- and Q-minimax designs found for the approximate Haar wavelet models
over G2 in Theorem 5 has reduced the problem to one of numerical minimization. First, we will discuss the
numerical solutions on A- and Q-minimax designs by using Splus; then we will conduct a simulation for
A-minimax designs over G2.
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5.1 Numerical Solution on A-, Q-minimax Designs over G2

In Section 4, we have proven that A- and Q-minimax designs have the same form as in (20). Now we will
use the simplest case of m = 0 to show the resulting numerical solutions on A- and Q-minimax designs for
various over G2. It is obvious that m (x) can be simplified as:

m (x) =

⎧⎨⎩
¡
a1 − a2π

−1 (x)
¢+

, x ∈
£
0, 12

¢
;¡

b1 − b2π
−1 (x)

¢+
, x ∈

£
1
2 , 1
¢
.

(21)

We let

d11 =
R 1

2

0
m (x) dx, d12 =

R 1
1
2
m (x) dx,

d21 =
R 1

2

0
m2 (x) dx, d22 =

R 1
1
2
m2 (x) dx,

ld1 =
R 1

2

0
π−1 (x)m (x) dx, ld2 =

R 1
1
2
π−1 (x)m (x) dx,

(22)

where d11 + d12 = 1. Then we can obtain the following maximum A-loss function:

max
g∈G2

Aloss =

⎧⎪⎪⎨⎪⎪⎩
τ2
³
d22d

2
11+d21d

2
12−4d211d212

4d211d
2
12

+
d22d

2
11−d21d212
4d211d

2
12

+ ν
ld2d

2
11+ld1d

2
12

2d211d
2
12

´
, d22d

2
11 − d21d

2
12 ≥ 0

τ2
³
d22d

2
11+d21d

2
12−4d211d212

4d211d
2
12

− d22d
2
11−d21d212
4d211d

2
12

+ ν
ld2d

2
11+ld1d

2
12

2d211d
2
12

´
, d22d

2
11 − d21d

2
12 < 0

. (23)

Plugging (21) into (23), we obtain the numerical solution of the coefficients in (20) for a few examples as
follows.
We take ν = 0.1, 1, and 5; also take π (x) = x, 1x , e

x, and e−x in the examples. The design density m (x)
is in form of (21). For various ν and π (x) , the coefficients a1, a2, b1, and b2 in (21) are shown in Tables 2
and 3. The graphs of these design densities are shown in Figure 1, 2, 3, and 4.
The resulting design densities suggest that an increasing efficiency function induces a piecewise increasing

design density (such as those in Figure 1 and 3) while a decreasing efficiency function results in a piecewise
decreasing design density (such as those in Figure 2 and 4). This means that relatively more test subjects
should be allocated in those areas that have larger values of efficiency functions. In addition, decreasing ,
meaning less effort on minimizing variances than that on reducing biases, causes more uniform designs.
The relative efficiency of the design obtained relative to uniform design is discussed next. We denote the

minimum of Aloss function as MinAloss, and denote the loss function, when uniform design is applied, as
Uloss. We denote the relative efficiency as eff , which is defined by Uloss

MinAloss . The MinAloss, Uloss, and
eff are provided in Tables 4 and 5 for various π (x) .

5.2 Discretization

In order to implement the designs with densities, discretization has to be taken place. We use the method
of matching quantiles and find those design support points xi such thatZ xi

0

m (x) dx =
i− 0.5
10

, i = 1, 2, · · · , n.

In this section we take the sample size of n = 10 as an example. For various π (x) , the resulting design points
after discretization are listed in Table 6. Also see Figure 5, 6, 7, and 8 for their plots.
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5.3 Simulation

Finally, we do a simulation by using the true model

y (x) = 1− 0.5ψ00 (x) + g (x) + ε (x) ,

where g (x) ∈ G2, ε (x) ∈ Υ . Suppose π (x) = 1
x , τ

2 = 0.1, σ2 = 5, n = 10, and g (x) is

g (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
5
2 , x ∈ [0.1090, 0.1190] ,√
5
2 , x ∈ [0.2190, 0.2290] ,√
5
2 , x ∈ [0.5090, 0.5190] ,√
5
2 x ∈ [0.5400, 0.5500]√
5
2 x ∈ [0.5800, 0.5900]√
5
2 x ∈ [0.6190, 0.6290]√
5
2 x ∈ [0.6700, 0.6800]√
5
2 x ∈ [0.8090, 0.8190]

0 otherwise.

When ν = 5, the A-minimax design found in Table 6 is¡
0.1175 0.2290 0.3550 0.5090 0.5430 0.5800 0.6220 0.6705 0.7295 0.8160

¢
.

The uniform design is: ¡
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

¢
.

We perform this simulation 200 times. The values of Uloss and MinAloss are shown in Appendix I. We
also calculate AMinAloss, which is the average of MinAloss over these 200 runs, and AUloss, which is the
average of Uloss over these 200 runs. The efficiency eff is defined as AUloss

AMinloss , and the simulation results
are as follows:

ν AMinAloss AUloss eff
5 131.63 156.55 1.189319

This simulation study confirms that our robust design is more efficient than uniform design when the model
is possibly contaminated.

6 Concluding Remarks

This paper presents the methods of constructing optimally robust designs for wavelet regression in the
cases of heteroscedasticity, taking the uncertainty in assumed regression function into account. Some of the
resulting designs require possible extensive numerical work prior to implementation. Nevertheless, the results
of this paper provide valuable guidelines in designing an experiment for wavelet regression problems.
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Appendix: Derivations

Proof of Theorem 1: Let

Φ (n1, n2, · · · , n2m+1 , t) =
σ2τ−2 + n1Z1 + · · ·+ n2m+1Z2m+1

n1n2 · · ·n2m+1

+ t (n1 + n2 + · · ·+ n2m+1 − n) .

We need to solve the equations below ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ(n1,n2,··· ,n2m+1 ,t)
∂n1

= 0,

∂Φ(n1,n2,··· ,n2m+1 ,t)
∂n2

= 0,
...

∂Φ(n1,n2,··· ,n2m+1 ,t)
∂t = 0.

,

Φ (n1, n2, · · · , n2m+1 , t) can be written as

σ2τ−2

2m+1Y
j=1

nj

+
2m+1X
i=1

Zi
2m+1Y

j=1,j 6=i
nj

+ t

⎛⎝2m+1X
i=1

ni − n

⎞⎠ ,

and the partial derivatives of Φ (n1, n2, · · · , n2m+1 , t) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ0(n1,n2,··· ,n2m+1 ,γ)
∂nk

= − 1
n2k

⎛⎜⎜⎜⎜⎝ σ2τ−2

2m+1Y
j=1,j 6=k

nj

+
2m+1X

i=1,i6=k

Zi
2m+1Y

j=1,j 6=i,j 6=k

nj

⎞⎟⎟⎟⎟⎠+ t, k = 1, 2, · · · , 2m+1;

∂Φ0(n1,n2,··· ,n2m+1 ,γ)
∂t =

2m+1X
i=1

ni − n.

Set these equations to zero, then (10) is attained. ¤

Proof of Corollary 1: is very similar to that of Theorem 1, so we omit it.

Proof of Theorem 2: We minimize
R 1
0

h
z (x)T XT

HL
−1XHz (x)

i
dx over design support points (xi) and

allocations (ni) . We have

min
ξ

Z 1

0

h
z (x)

T
XT
HL
−1XHz (x)

i
dx

= min
ξ

Z 1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2m+1X
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎣1 + mX
j=0

2j−1X
k=0

ψjk (ui)ψjk (x)

⎤⎦2
niP
j=1

π (xij)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
dx

= min
ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2m+1X
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
R 1
0

⎡⎣1 + mX
j=0

2j−1X
k=0

ψjk (ui)ψjk (x)

⎤⎦2 dx
niP
j=1

π (xij)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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In order to minimize over xi, all π (xij) must satisfy that π (xij) = Zi = π
¡
x(i)

¢
, where χi =

£
i−1
2m+1 ,

i
2m+1

¢
,

i = 1, · · · , 2m+1, and then

min
ξ

Z 1

0

h
z (x)T XT

HL
−1XHz (x)

i
dx

= min
ni

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2m+1X
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
R 1
0

⎡⎣1 + mX
j=0

2j−1X
k=0

ψjk (ui)ψjk (x)

⎤⎦2 dx
niZi

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Because Z 1

0

⎡⎣1 + mX
j=0

2j−1X
k=0

ψjk (ui)ψjk (x)

⎤⎦2 dx = ¡2m+1¢2 1

2m+1
= 2m+1,

the minimum over ni is

min
ni

Z 1

0

h
z (x)T XT

HL
−1XHz (x)

i
dx = min

ni

⎡⎣2m+1X
i=1

µ
2m+1

niZi

¶⎤⎦ ,
subject to n1 + n2 + · · ·+ n2m+1 = n. Then, this theorem follows.
Proof of Theorem 3: We omit the proofs for (17) and (18) because they are very similar to those in Oyet
and Wiens (2000). In order to get max

g∈G2

Dloss, which is the maximum of Dloss, we use the method of Lagrange

multipliers to maximize bTD−1b, where b =
R 1
0
f (x) g (x)m (x) dx,D =

R 1
0
f (x) fT (x)π−1 (x)m (x) dx, andZ 1

0

f (x) g (x) dx = 0,

Z 1

0

g2 (x) dx ≤ τ2.

If
R 1
0
g2k (x) dx = k2 < τ2, let gτ (x) = τ

kgk (x) , meaning we have
R 1
0
g2τ (x) dx = τ2 and bT (gk)D−1b (gk) =

k2

τ2b
T (gτ )D

−1b (gτ ) < bT (gτ )D
−1b (gτ ). Therefore, the maximum loss can be searched over g (x) ∈ G∗2

where

G∗2 =

½
g (x) |

Z 1

0

g2 (x) dx = τ2,

Z 1

0

g (x) dx = 0 and
Z 1

0

ψjk (x) g (x) dx = 0

¾
.

Let

F = bTD−1b−γ1
µZ 1

0

g2 (x) dx− τ2
¶
− 2

µZ 1

0

fT (x) g (x) dx

¶
γ2,

then let
∂F

∂g
= 0,

we have ⎧⎪⎨⎪⎩
g (x) = bTD−1f(x)m(x)−fT (x)γ2

γ1
,R 1

0
f (x) g (x) dx = 0,R 1
0
g2 (x) dx = τ2.

(A.1)

By solving the equations (A.1) we obtain:⎧⎨⎩
R 1
0
f (x)

h
bTD−1f(x)m(x)−fT (x)γ2

γ1

i
dx = 0,

1
0 [b

TD−1f(x)m(x)−fT (x)γ2]
2
dx

γ21
= τ2.
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From the first equation in (??) we get

1

γ1

∙Z 1

0

bTD−1f (x) fT (x)m (x) dx−
Z 1

0

γT2 f (x) f
T (x) dx

¸
= 0T .

Namely
γ2 = BD

−1b. (A.2)

Plugging (A.2) into the first equation in (A.1), then we have

g0 (x) =
bTD−1f (x)m (x)− bTD−1Bf (x)

γ1
(A.3)

=
fT (x) (m (x) I−B)D−1b

γ1
= fT (x) [m (x) I−B]D−1c,

where c = b
γ1
. So

b =

Z 1

0

f (x) g (x)m (x) dx

=

Z 1

0

f (x) fT (x)m (x) [m (x) I−B]D−1cdx

= KD−1c,

and
bTD−1b = c

T
D−1KD−1KD−1c. (A.4)

From the second equation in (??) we getZ 1

0

©
cTD−1 [m (x) I−B] f (x)

ª2
dx = τ2.

Let

H =

Z 1

0

£
D−1 {m (x) I−B} f (x)

¤ £
fT (x) {m (x) I−B}D−1

¤
dx

= D−1CD−1 −D−1B2D−1

= D−1KD−1,

where C =
R
S
f (x) fT (x)m2 (x)dx and

a =
H

1
2 c

τ
.

Then we have
c =τH−

1
2a. (A.5)

Plugging (A.5) into (A.3) we can get

g0 (x) = τ fT (x) [m (x) I−B]D−1H− 1
2a, (A.6)

for some a satisfying kak2 = 1. We write (A.6) as

g0 (x) = u
T (x) a,

where
uT (x) = τ fT (x) (m (x) I−B)D−1H− 1

2 .
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And plugging (A.5) into (A.4) we can get

bTD−1b =τ2aTH−
1
2D−1KD−1KD

−1
H−

1
2a. (A.7)

Now, our problem becomes to maximize (A.7) subject to ||a||2 = 1. Because

max
||a||2=1

τ2aTH−
1
2D−1KD−1KD

−1
H−

1
2a = τ2λmax

³
H−

1
2D−1KD−1KD

−1
H−

1
2

´
= τ2λmax

¡
KD−1

¢
,

and bTD−1b is the only term includes g (x), the maximum of Dloss is (19).¤
Proof of Theorem 4: (1) For D-minimax we have the non-negative definite matrix KD−1, which means
minλmax

¡
KD−1

¢
= 0. We obtain that the uniform design ξ∗ is one of the situations whereminλmax

¡
KD−1

¢
=

0. Also, we know that max |B| = max
¯̄̄R 1
0
f (x) fT (x)m (x) dx

¯̄̄
= |I| = 1. Therefore, the uniform design is a

D-minimax design and

min
m(x)

max
g∈G2

Dloss =

µ
σ2

n

¶2m+1

.

(2) For A-minimax and Q-minimax, first we can easily know from (17) and (18) that A-minimax designs
and Q-minimax designs are the same. In this case we only focus on minimizing (18). From (18), we know
max
g∈G2

Aloss is the function of m (x). And because
R 1
0
m (x) dx = 1, let

ρ (m) = τ2
¡
λmax

¡
K (m)B−2 (m)

¢
+ ν · trB−1 (m)D (m)B−1 (m)

¢
+ t

µZ 1

0

m (x) dx− 1
¶

= ρ1 (m) + ρ2 (m) + t

µZ 1

0

m (x) dx− 1
¶
,

where ρ1 (m) = τ2λmax
¡
K (m)B−2 (m)

¢
, ρ2 (m) = τ2ν · trB−1 (m)D (m)B−1 (m). Using the Lagrange

multipliers method, we get ⎧⎪⎨⎪⎩
∂mρ (m) = ∂mρ1 (m) + ∂mρ2 (m) + t∂m = 0

∂tρ (m) =
³R 1

0
m (x) dx− 1

´
∂t = 0

. (A.8)

Because
ρ2 (m) = τ2ν · trB−1 (m)D (m)B−1 (m) ,

we have

∂mρ2 (m) = τ2ν · ∂mtr
£
B−1 (m)D (m)B−1 (m)

¤
= τ2ν · tr

©
−B−1 (m)B0 (m)B−1 (m)D (m)B−1 (m)

+B−1 (m)D0 (m)B−1 (m)−B−1 (m)D (m)B−1 (m)B0 (m)B−1 (m)
ª

= τ2ν
©
π−1 (x) fT (x)B−2 (m) f (x)

−fT (x)
£
B−1 (m)D (m)B−2 (m)+B−2 (m)D (m)B−1 (m)

¤
f (x)

ª
= π−1 (x) fT (x)Nwf (x)− fT (x)Wwf (x) ,

where Nw = τ2νB−2 (m) andWw = B
−1 (m)D (m)B−2 (m)+B−2 (m)D (m)B−1 (m) . And

ρ1 (m) = τ2λmax
¡
K (m)B−2 (m)

¢
= τ2λmax

¡
B−1 (m)K (m)B−1 (m)

¢
= τ2 max

d∈<p, d6=0

dB−1 (m)K (m)B−1 (m)d

dTd
,
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where d is any vector in <p, and we let vector w = B−1 (m)d. Then w ∈ <p, w 6= 0 if and only if v ∈ <p,
v 6= 0, since K is positive definite. Thus

ρ1 (m) = τ2λmax
¡
B−1 (m)K (m)B−1 (m)

¢
= τ2 max

w∈<p, w 6=0

wTK (m)w

wTB2 (m)w

= τ2 max
kwk=1

wTK (m)w

wTB2 (m)w
.

Suppose that all the entries of matrices B (m) and K (m) are continuously differentiable functions of m ∈
L2 (S). Then

ρ1 (m) = τ2 max
kwk=1

wTK (m)w

wTB2 (m)w
,

is locally Lipschitz and its generalized gradient at m is

∂ρ1 (m) = τ2 · co
(∙

wTK (m)w

wTB2 (m)w

¸0
m

: w ∈M (m)

)
,

where

M (m) =

½
w :

wTK (m)w

wTB2 (m)w
= max
kwk=1

wTK (m)w

wTB2 (m)w

¾
,

and
coA=

nX
piai : pi ≥ 0,

X
pi = 1, ai ∈ A

o
,

is the convex hull of set A. For a vector w ∈ <p,

∙
wTK (m)w

wTB2 (m)w

¸0
m

=
wTK0 (m)w

wTB2 (m)w

−

h
wT

£
B2 (m)

¤0
w
i £
wTK (m)w

¤
[wTB2 (m)w]

2

=
−2fT (x)

£
wwTB (m)wTK (m)w+wwTB (m)wTB2 (m)w

¤
f (x)

[wTB2 (m)w]
2

+
2fT (x)wwT f (x)m (x)

[wTB2 (m)w]
2

= −fT (x)Mw1f (x) +
£
bTwf (x)

¤2
m (x) ,

where Mw = −
2[wwTB(m)wTK(m)w+wwTB(m)wTB2(m)w]

[wTB2(m)w]2
,bTw =

√
2 wT

wTB2(m)w . So (A.8) equals to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π−1 (x) fT (x)Nwf (x)− fT (x)Wwf (x)− fT (x)
NP
i=1

piMwif (x)

+
NP
i=1

pi
£
bTwi

f (x)
¤2
m (x) + t = 0

R 1
0
m (x) dx− 1 = 0

.

Consequently, there exist a constant symmetric matrix M, a constant positive semi-definite matrix U, a
constant symmetric positive definite matrix N and a constant t such that

fT (x)Uf (x)m (x) + π−1 (x) fT (x)Nf (x)− fT (x)Mf (x) + t = 0, (A.9)

for all x such that m (x) > 0. Since fT (x)Uf (x) > 0, by solving (A.9), we have (20).¤
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Table 1: Convergence Time (in millisecond), δ = 1
2m+1∗1000

m σ2

nτ2 π (x) = x2 π (x) = exp(−x)
3 neglectable 16 16
3 1 15 15
4 neglectable 32 78
4 1 31 63
5 neglectable 141 266
5 1 62 63
6 neglectable 609 344
6 1 312 188

Table 2: Coefficients in (21)
π (x) = x π (x) = 1

x
ν a1 a2 b1 b2 a1 a2 b1 b2
0.1 1.5085 0.0027 1.0560 0.3813 0.7471 0.0602 1.4887 0.2961
1 1.5111 0.0080 0.9966 0.3027 0.9111 0.7746 2.3387 1.4105
5 1.5485 0.0166 1.0532 0.3181 1.4802 3.4060 6.7093 7.1824
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Table 3: Coefficients in (21), continued
π (x) = ex π (x) = e−x

ν a1 a2 b1 b2 a1 a2 b1 b2
0.1 1.1764 0.0638 0.9323 0.1245 0.9812 0.0808 1.4029 0.1311
1 1.0719 −0.0657 0.9033 0.0583 2.3518 1.1377 3.0309 0.8921
5 4.6228 4.4457 3.6020 5.7124 6.2540 4.1961 8.0297 3.2678

Table 4: Losses and Relative Efficiencies
π (x) = x π (x) = 1

x
ν MinAloss Uloss eff MinAloss Uloss eff
0.1 0.9456 1.9138 2.024 0.0928 0.1000 1.077
1 8.1861 19.1376 2.338 0.9080 0.9995 1.101
5 36.6151 95.6881 2.613 4.0400 4.9975 1.237

Table 5: Losses and Relative Efficiencies, continued
π (x) = ex π (x) = e−x

ν MinAloss Uloss eff MinAloss Uloss eff
0.1 0.1244 0.1265 1.0164 0.3373 0.3436 1.0185
1 1.2455 1.2645 1.0153 3.3237 3.4357 1.0337
5 6.0239 6.3226 1.0496 15.6874 17.1824 1.0953

Table 6: Discretized Design Points
π (x) = x π (x) = 1

x π (x) = ex π (x) = e−x

ν = 0.1 ν = 1 ν = 5 ν = 0.1 ν = 1 ν = 5 ν = 0.1 ν = 1 ν = 5 ν = 0.1 ν = 1 ν = 5
0.041 0.050 0.062 0.067 0.056 0.118 0.045 0.044 0.117 0.057 0.042 0.025
0.109 0.121 0.135 0.203 0.178 0.229 0.135 0.133 0.231 0.168 0.133 0.080
0.171 0.190 0.204 0.340 0.317 0.355 0.223 0.222 0.312 0.282 0.234 0.144
0.243 0.258 0.272 0.478 0.484 0.509 0.312 0.310 0.380 0.397 0.355 0.227
0.310 0.325 0.339 0.563 0.557 0.543 0.401 0.400 0.439 0.509 0.508 0.505
0.376 0.392 0.405 0.639 0.619 0.580 0.488 0.490 0.494 0.595 0.574 0.544
0.443 0.459 0.471 0.717 0.692 0.622 0.600 0.601 0.694 0.681 0.646 0.589
0.543 0.588 0.617 0.796 0.769 0.671 0.716 0.716 0.805 0.770 0.726 0.639
0.758 0.770 0.784 0.876 0.855 0.730 0.830 0.820 0.892 0.860 0.817 0.699
0.924 0.927 0.931 0.959 0.945 0.816 0.944 0.943 0.966 0.953 0.928 0.786
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Figure 1: Design density m (x) when π (x) = x.

Figure 2: Design density m (x) when π (x) = 1
x .
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Figure 3: Design density m (x) when π (x) = ex.

Figure 4: Design density m (x) when π (x) = e−x.
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Figure 5: Discrete design points xi for various ν when π (x) = x.

Figure 6: Discrete design points xi for various ν when π (x) = 1
x .
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Figure 7: Discrete design points xi for various ν when π (x) = ex.

Figure 8: Discrete design points xi for various ν when π (x) = e−x.


