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Abstract

This note derives a fast algorithm for maximum-likelihood estimation of both parameters of a Gamma
distribution or negative-binomial distribution.

1 Introduction

We have observed n independent data points X = [x;..z,] from the same density 6. We restrict 6 to the class of
Gamma densities, i.e. 6 = (a,b):

a—1

L(a)b

- exp(—f)

p(zla,b) = Ga(z;a,b) = 5

Figure 1: The Ga(3,2) density function.

Figure 1 plots a typical Gamma density. In general, the mean is ab and the mode is (a — 1)b.

2 Maximum likelihood

The log-likelihood is

1
logp(Dla,b) = (a— I)Zlogaji —nlogT'(a) — nalogb — EZIZ' (1)
= n(a—Dlogz —nlogT'(a) — nalogb — nz/b (2)

The maximum for b is easily found to be
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Figure 2: The log-likelihood (4) versus the Gamma-type approximation (9) and the bound (6) at conver-
gence. The approximation is nearly identical to the true likelihood. The dataset was 100 points sampled
from Ga(7.3,4.5).

Substituting this into (1) gives
logp(Dla,b) = n(a—1)logz —nlogl(a) — nalog 4+ naloga — na (4)

We will describe two algorithms for maximizing this function.

The first method will iteratively maximize a lower bound. Because aloga is convex, we can use a linear lower
bound:

aloga > (1+logag)(a— ap) + aglogag (5)
logp(D]a,b) > n(a—1)logz —nlogT(a) — nalogz + n(1 +logag)(a — ag) + nag logag — na (6)
The maximum is at
0 = nlogz —n¥(a) —nlogz +n(l+logag) —n (7)
V(@) = logz —logZ +logag (8)

The iteration proceeds by setting ag to the current @, then inverting the ¥ function to get a new a. Because the
log-likelihood is concave, this iteration must converge to the (unique) global maximum. Unfortunately, it can be
quite slow, requiring around 250 iterations if a = 10, less for smaller a, and more for larger a.

The second algorithm is much faster, and is obtained via ‘generalized Newton’ (Minka:newton). Using an
approximation of the form,

logp(Dl]a,b) =~ c¢o+ cra+ colog(a) 9)
the update is
1 1  logz—logZ+loga— ¥(a)
_ 1 10
anew a + a?(1/a — ¥'(a)) (10)

This converges in about four iterations. Figure 2 shows that this approximation is very close to the true log-
likelihood, which explains the good performance.

A good starting point for the iteration is obtained via the approximation

1
logT'(a) ~ alog(a) —a— 3 log a + const. (Stirling) (11)
1
v ~ 1 - — 12
(@) ~ log(a)— - (12)
PR p— (13)
logZx — log x



(Note that logT > log x by Jensen’s inequality.)

2.1 Negative binomial

The maximum-likelihood problem for the negative binomial distribution is quite similar to that for the Gamma.
This is because the negative binomial is a mixture of Poissons, with Gamma mixing distribution:

AT AT
p(z|a,b) = /}\Po(m;)\)Ga()\;a,b)d)\: )\ge We /bdx (14)
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Let’s consider a slightly generalized negative binomial, where the ‘waiting time’ for x is given by ¢:
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p(aft,a.b) = / Po(z; At)Ga(); a, b)dA = / o © T(a)
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Given a data set D = {(z;,t;)}, we want to estimate (a,b). One approach is to use EM, where the E-step infers
the hidden variable \A;:

e MbdA (16)

b

EN] = i 1
M = (ot a) (18)

Ell i = Yz 1 1
[log A;] (z; +a) +log — (19)

The M-step then maximizes
1

(a—1) EZ Ellog A\;] — nlogT'(a) — nalogb — 7 % E[\] (20)

which is a Gamma maximum-likelihood problem.
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