MATH 2P13, Winter, 2018

ASSIGNMENT \#3

Due 4pm, Friday, March 16, 2018

1. Let $A=\left[\begin{array}{ccc}2 & 4 & 1 \\ 5 & -7 & -1 \\ 11 & 5 & 4\end{array}\right]$, and $B=\left[\begin{array}{ccc}2 & 4 & 1 \\ 5 & -7 & -1 \\ 0 & 0 & 1\end{array}\right]$. Find elementary matrices E_{1}, E_{2}, and E_{3} such that $E_{3} E_{2} E_{1} A=B$.
2. Find the value of k that satisfies the following equation.

$$
\operatorname{det}\left[\begin{array}{ccc}
3 a_{1} & 3 a_{2} & 3 a_{3} \\
5 b_{1}+6 c_{1} & 5 b_{2}+6 c_{2} & 5 b_{3}+6 c_{3} \\
4 a_{1}+7 c_{1} & 4 a_{2}+7 c_{2} & 4 a_{3}+7 c_{3}
\end{array}\right]=k \operatorname{det}\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right] .
$$

The following questions are referred to the text book.

Sec. 4.3, \# 12, 24, 26(d).
Sec. 5.1, \# 2(c), (d), 3(c), 4(f), 5, 12(a).
Sec. 5.2 \# 3(d), 4, 7(Hint: first find a matrix Q such that $Q^{-1} A Q=D$ a diagonal matrix, then $A=Q D Q^{-1}$, and $A^{n}=Q D^{n} Q^{-1}$).

Additional Practice Exercises. Not To Be Submitted.

Sec. $4.3 \# 14,15,16,17,20,21,22(\mathrm{a})$.
Sec. $5.1, \# 2(\mathrm{a}),(\mathrm{b}), 3(\mathrm{~b}), 4(\mathrm{c}),(\mathrm{d}), 9,11,14,15$.
Sec. 5.2, \# 3(b), (c), 8, 9, 10.

