BROCK UNIVERSITY

Page 1 of 9

Final Examination: April 2004
Course: Math 2P13
Date of Examination: April 16, 2004
Time of Examination:9:00-12:00

Number of Pages: 9
Number of students: 13
Number of hours: 3
Instructor: Y. Li

No examination aids other than those specified are permitted. Use or possession of unauthorized materials will automatically result in the award of a zero grade for this examination. A minimum of 30% must be obtained on this examination in order to achieve a passing grade in the course.

Name
 Student Number

Marks
[10] 1. Answer True or False to the following statements.
(a) Subsets of linearly dependent sets are linearly dependent.
(b) If S is a linearly independent set, then non of vectors in S is a linear combination of other vectors.
(c) Let $T, U: V->V$ be linear and β be an ordered basis for V. If $[T]_{\beta}=[U]_{\beta}$, then $T=U$.
(d) Let $T: V->W$ be linear and β, γ be ordered bases for V and W respectively. If $\operatorname{dim}(V)=m, \operatorname{dim}(W)=n$, then $[T]_{\beta}^{\gamma}$ is an $n \times m$ matrix.
(e) An elementary matrix is not invertible.
(f) Let $T: V->V$ be linear and β be an ordered basis for V. If $[T]_{\beta}$ is a diagonal matrix, then β may not be a basis consisting of eigenvectors of T.
(g) The Eigenspace E_{λ} is not T-invariant.
(h) Let $A=\left[\begin{array}{cc}2 & +i \\ -i & 3\end{array}\right]$. Then A is self -adjoint.
(i) If V is an inner product space and $x, y, z \in V$ such that $\langle x, y-z\rangle=0$, then $y=z$.
(j) If T is unitary and λ is an eigenvalue of T, then $|\lambda|=1$.
[10] 2. There are 5 multiple choice questions and they are worth 2 points each. Circle the right answer for each of the following:
(1) In C^{2}, define an inner product by $\langle x, y\rangle=x A y^{*}$, where $A=\left[\begin{array}{cc}1 & i \\ -i & 2\end{array}\right]$. Which of the following is $\langle x, y\rangle$ for $x=(1-i, 2+3 i)$ and $y=(2+i, 3-2 i)$.
(A) $6+21 i$
(B) $6-21 i$
(C) $-6+21 i$
(D) $-6-21 i$
(E) None of the others.
(2) Let $T: P_{2}(R)->R^{3}$ be linear transformation defined by $T\left(a+b x+c x^{2}\right)=(a-3 b, b+$ $c, a+b+2 c)$ and let β and γ be the standard bases for $P_{2}(R)$ and R^{3} respectively. which of the following matrix is equal to $[T]_{\beta}^{\gamma}$.
(A) $\left[\begin{array}{rrr}1 & -3 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$
(B) $\left[\begin{array}{rrr}1 & -3 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right]$
(C) $\left[\begin{array}{rrr}1 & -3 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2\end{array}\right]$
(D) $\left[\begin{array}{rrr}1 & -3 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
(E) None of the others.
(3) Let $S=\{(i, 0,1),(1,1,1)\}$ in C^{3}. Which of the following is true.(where S^{\perp} is the orthogonal complement of S).
(A) $\operatorname{dim}\left(S^{\perp}\right)=3$ (B) $\operatorname{dim}\left(S^{\perp}\right)=2$ (C) $\operatorname{dim}\left(S^{\perp}\right)=1$ (D) $\operatorname{dim}\left(S^{\perp}\right)=0$ (E) None of the others.
(4) Let λ be an eigenvalue of T with multiplicity 4 . Which of the following statement is not true.
(A) $\operatorname{dim}\left(E_{\lambda}\right)$ might be 1.
(B) $\operatorname{dim}\left(E_{\lambda}\right)$ might be 2 .
(C) $\operatorname{dim}\left(E_{\lambda}\right)$ might be 3 .
(D) $\operatorname{dim}\left(E_{\lambda}\right)$ might 4.
(E) None of the others.
(5) Let $\left.T: R^{4}->R^{4}\right)$ be linear transformations defined by $T(a, b, c, d)=(a+b, b-c, a+$ $c, a+d)$ and $e_{2}=(0,1,0,0)$. Then a basis for T-cyclic subspace generated by e_{2} is
(A) $\left\{e_{2}\right\}$.
(B) $\left\{e_{2}, T\left(e_{2}\right)\right\}$.
(C) $\left\{e_{2}, T\left(e_{2}\right), T^{2}\left(e_{2}\right)\right\}$.
(D) $\left\{e_{2}, T\left(e_{2}\right), T^{2}\left(e_{2}\right), T^{3}\left(e_{2}\right)\right\}$.
(E) None of the others.
[12] 3. (a) Let $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ 2 & -5 & -1 \\ 8 & -3 & 2\end{array}\right]$, and $B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 2 & -5 & -1 \\ 0 & 0 & 1\end{array}\right]$. Find elementary matrices
E_{1}, E_{2}, and E_{3} such that $E_{3} E_{2} E_{1} A=B$.
(b) Find the value of k that satisfies the following equation.

$$
\operatorname{det}\left[\begin{array}{ccc}
5 a_{1} & 5 a_{2} & 5 a_{3} \\
4 b_{1}+5 c_{1} & 4 b_{2}+5 c_{2} & 4 b_{3}+5 c_{3} \\
7 a_{1}+3 c_{1} & 7 a_{2}+3 c_{2} & 7 a_{3}+3 c_{3}
\end{array}\right]=k \operatorname{det}\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right] .
$$

[9] 4. Let T be the linear operator on $P_{2}(R)$ defined by $T(f(x))=f(x)+(x+1) f^{\prime}(x)$.
(a) Compute $T(x)$ and $T^{2}(x)$.
(b) Find a basis for the T-cyclic subspace generated by x.
(c) Find matrices $[T]_{\beta},\left[T^{*}\right]_{\beta}$, where β is the standard basis for $P_{2}(R)$, and T^{*} is the adjoint operator of T.
(d) Find $\left[T^{*}(x)\right]_{\beta}$ and $T^{*}(x)$.
[12] 5. Let $A=\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) Find a basis for each eigenspace of A.
(c) Find an orthonormal basis for R^{3} consisting of eigenvectors of A.
(d) Find an orthogonal matrix P and diagonal matrix D such that $P^{T} A P=D$.
6. Let T be a linear operator on a finite dimensional vector space V with Jordan canonical form

$$
\left[\begin{array}{lllllll}
5 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

(a) Find the characteristic polynomial, eigenvalues and their multiplicities of T.
(b) Find dot diagram corresponding to each eigenvalue λ_{i} of T .
(c) Find $\operatorname{dim}\left(K_{\lambda_{i}}\right)$ and $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for each eigenvalue λ_{i}. For which $\lambda_{i}, K_{\lambda_{i}}=E_{\lambda_{i}}$? (Hint use the Jordan form of T)
(d) According to the dot diagram found in (b), how many cycles are there corresponding to the eigenvalue $\lambda=5$? what are their lengths?
(e) What is the smallest positive integer p for which $K_{5}=N\left((T-5 I)^{p}\right)$.
[15] 7. Do only three (3) of the following:
(a) Let T be a linear operator. Then v is an eigenvector of T corresponding to λ if and only if $v \neq 0, v \in N(T-\lambda I)$.
(b) For any square matrix A, prove that A and A^{T} have the same characteristic polynomial.
(c) Let T and U be self-adjoint operators on an inner product space V. Prove that T commutes with U if and only if $T U$ is self-adjoint.
(d) Let β be a basis for an inner product space V, and let $y, z \in V$. Prove that $y=z$ if and only if $\langle y, v\rangle=<z, v\rangle$ for every $v \in \beta$.
(e) Given that $\operatorname{det}\left[\begin{array}{cc}A & O \\ B & I\end{array}\right]=\operatorname{det}(A)$ and $\operatorname{det}\left[\begin{array}{cc}I & O \\ D & C\end{array}\right]=\operatorname{det}(C)$, where A, C are square matrices, I is an identity matrix, and O is a zero matrix. Prove that $\operatorname{det}\left[\begin{array}{cc}A & O \\ B & C\end{array}\right]=$ $\operatorname{det}(A) \operatorname{det}(C)$.

