BROCK UNIVERSITY

Page 1 of 9

Final Examination: April 2004	Number of Pages: 9
Course: Math 2P13	Number of students: 13
Date of Examination: April 16, 2004	Number of hours: 3
Time of Examination:9:00 - 12:00	Instructor: Y. Li

No examination aids other than those specified are permitted. Use or possession of unauthorized materials will automatically result in the award of a zero grade for this examination. A minimum of 30% must be obtained on this examination in order to achieve a passing grade in the course.

Marks

- [10] 1. Answer True or False to the following statements.
 - (a) Subsets of linearly dependent sets are linearly dependent. ()
 - (b) If S is a linearly independent set, then non of vectors in S is a linear combination of other vectors. ()
 - (c) Let $T, U: V \to V$ be linear and β be an ordered basis for V. If $[T]_{\beta} = [U]_{\beta}$, then T = U.
 - (d) Let $T: V \to W$ be linear and β, γ be ordered bases for V and W respectively. If $\dim(V) = m, \dim(W) = n$, then $[T]^{\gamma}_{\beta}$ is an $n \times m$ matrix. ()
 - (e) An elementary matrix is not invertible.

)

(f) Let $T: V \to V$ be linear and β be an ordered basis for V. If $[T]_{\beta}$ is a diagonal matrix, then β may not be a basis consisting of eigenvectors of T. ()

(

)

- (g) The Eigenspace E_{λ} is not T -invariant.
- (h) Let $A = \begin{bmatrix} 2 & +i \\ -i & 3 \end{bmatrix}$. Then A is self -adjoint. ()
- (i) If V is an inner product space and $x, y, z \in V$ such that $\langle x, y z \rangle = 0$, then y = z. . ()
- (j) If T is unitary and λ is an eigenvalue of T, then $|\lambda| = 1$. ()
- [10] 2. There are 5 multiple choice questions and they are worth 2 points each. Circle the right answer for each of the following:
 - (1) In C^2 , define an inner product by $\langle x, y \rangle = xAy^*$, where $A = \begin{bmatrix} 1 & i \\ -i & 2 \end{bmatrix}$. Which of the following is $\langle x, y \rangle$ for x = (1 i, 2 + 3i) and y = (2 + i, 3 2i).

(A)
$$6 + 21i$$
 (B) $6 - 21i$ (C) $-6 + 21i$ (D) $-6 - 21i$ (E) None of the others.

- (2) Let $T: P_2(R) \to R^3$ be linear transformation defined by $T(a + bx + cx^2) = (a 3b, b + c, a + b + 2c)$ and let β and γ be the standard bases for $P_2(R)$ and R^3 respectively. which of the following matrix is equal to $[T]^{\gamma}_{\beta}$.
 - $(\mathbf{A}) \begin{bmatrix} 1 & -3 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $(\mathbf{B}) \begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $(\mathbf{C}) \begin{bmatrix} 1 & -3 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ $(\mathbf{D}) \begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 - (E) None of the others.

(3) Let $S = \{(i, 0, 1), (1, 1, 1)\}$ in C^3 . Which of the following is true.(where S^{\perp} is the orthogonal complement of S).

(A) $dim(S^{\perp}) = 3$ (B) $dim(S^{\perp}) = 2$ (C) $dim(S^{\perp}) = 1$ (D) $dim(S^{\perp}) = 0$ (E) None of the others.

(4) Let λ be an eigenvalue of T with multiplicity 4. Which of the following statement is not true.

(A) $dim(E_{\lambda})$ might be 1. (B) $dim(E_{\lambda})$ might be 2. (C) $dim(E_{\lambda})$ might be 3. (D) $dim(E_{\lambda})$ might 4. (E) None of the others.

- (5) Let $T: R^4 \to R^4$ be linear transformations defined by T(a, b, c, d) = (a + b, b c, a + c, a + d) and $e_2 = (0, 1, 0, 0)$. Then a basis for T-cyclic subspace generated by e_2 is
 - (A) $\{e_2\}$. (B) $\{e_2, T(e_2)\}$. (C) $\{e_2, T(e_2), T^2(e_2)\}$. (D) $\{e_2, T(e_2), T^2(e_2), T^3(e_2)\}$.
 - (E) None of the others.

[12] 3. (a) Let
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & -5 & -1 \\ 8 & -3 & 2 \end{bmatrix}$$
, and $B = \begin{bmatrix} 3 & 1 & 1 \\ 2 & -5 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. Find elementary matrices

 E_1, E_2 , and E_3 such that $E_3E_2E_1A = B$.

(b) Find the value of k that satisfies the following equation.

$$\det \begin{bmatrix} 5a_1 & 5a_2 & 5a_3 \\ 4b_1 + 5c_1 & 4b_2 + 5c_2 & 4b_3 + 5c_3 \\ 7a_1 + 3c_1 & 7a_2 + 3c_2 & 7a_3 + 3c_3 \end{bmatrix} = k \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}.$$

- [9] 4. Let T be the linear operator on $P_2(R)$ defined by T(f(x)) = f(x) + (x+1)f'(x).
 - (a) Compute T(x) and $T^2(x)$.

(b) Find a basis for the T-cyclic subspace generated by x.

(c) Find matrices $[T]_{\beta}, [T^*]_{\beta}$, where β is the standard basis for $P_2(R)$, and T^* is the adjoint operator of T.

(d) Find $[T^*(x)]_\beta$ and $T^*(x)$.

[12] 5. Let
$$A = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$
.

(a) Find all eigenvalues of A.

(b) Find a basis for each eigenspace of A.

(c) Find an orthonormal basis for R^3 consisting of eigenvectors of A.

(d) Find an orthogonal matrix P and diagonal matrix D such that $P^T A P = D$.

[12] 6. Let T be a linear operator on a finite dimensional vector space V with Jordan canonical form

5		0	0			0
0	5	1	0	0	0	0
0	0	5	1	0	0	0
0	0	0	5	0	0	0
0		0	0			0
0	0	0	0	0	3	0
0	0	0	0	0	0	3
-						_

(a) Find the characteristic polynomial, eigenvalues and their multiplicities of T.

(b) Find dot diagram corresponding to each eigenvalue λ_i of T.

(c) Find dim (K_{λ_i}) and dim (E_{λ_i}) for each eigenvalue λ_i . For which $\lambda_i, K_{\lambda_i} = E_{\lambda_i}$? (Hint use the Jordan form of T)

- (d) According to the dot diagram found in (b), how many cycles are there corresponding to the eigenvalue $\lambda = 5$? what are their lengths?
- (e) What is the smallest positive integer p for which $K_5 = N((T 5I)^p)$.

- [15] 7. Do only three (3) of the following:
 - (a) Let T be a linear operator. Then v is an eigenvector of T corresponding to λ if and only if $v \neq 0, v \in N(T \lambda I)$.
 - (b) For any square matrix A, prove that A and A^T have the same characteristic polynomial.
 - (c) Let T and U be self-adjoint operators on an inner product space V. Prove that T commutes with U if and only if TU is self-adjoint.
 - (d) Let β be a basis for an inner product space V, and let $y, z \in V$. Prove that y = z if and only if $\langle y, v \rangle = \langle z, v \rangle$ for every $v \in \beta$.
 - (e) Given that det $\begin{bmatrix} A & O \\ B & I \end{bmatrix} = \det(A)$ and det $\begin{bmatrix} I & O \\ D & C \end{bmatrix} = \det(C)$, where A, C are square matrices, I is an identity matrix, and O is a zero matrix. Prove that det $\begin{bmatrix} A & O \\ B & C \end{bmatrix} = \det(A) \det(C)$.

[80]