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ABSTRACT. In this note we investigate the hypercentral units
in integral group rings ZG, where G is not necessarily torsion.
One of the main results obtained is the following (Theorem 3.5):
if the set of torsion elements of G is a subgroup T of G and if
Z2(U) is not contained in CU (T ), then T is either an Abelian
group of exponent 4 or a Q∗ group. This extends our earlier
result on torsion group rings.

1 Introduction

Let ZG denote the integral group ring of a group G and U(ZG) the group
of units of such a group ring. For convenience, we will sometimes write U
instead of U(ZG). If G is any group, let Zn(G) denote the n’th term of the
ascending central series of G and let Z̃(G) = ∪Zn(G), the hypercentre of G.

1This research was supported in part by grants from the Natural Sciences and Engi-
neering Research Council.



When G is finite, Arora, Hales and Passi [1] showed that Z̃(U) = Z2(U)
while Arora and Passi [2] showed that Z̃(U) ⊆ G ·Z(U) (and also completely
determined G∩ Z̃(U)). These results were extended to torsion groups in [5]
and [7].

Clearly, in general the equality, Z̃(U) = Z2(U), will no longer hold when
G is not necessarily torsion (consider torsion free nilpotent G). Our goal in
this paper is to investigate the inequality Z̃(U) ⊆ G ·Z(U) in a more general
setting. The obvious generalization of the torsion result would be again to
prove that Z̃(U) ⊆ G · Z(U). A weaker generalization of the torsion result
would be to prove that Z̃(U) ⊆ G · CU (T ).

In the next section we prove (Theorem 2.3) that the second property
holds whenever the torsion elements of G form an Abelian subgroup T and
Z(G/T ) has only trivial units. In the very particular case that G/T is cyclic
and every finite subgroup of G is normal in G, we further obtain (Theorem
2.7) a complete description of Zn(U) for all n ≥ 1 (in terms of Z(U)). In
addition, we show that the stronger first property holds for various classes
of groups.

The most substantial results in the paper are contained in section 3
and are concerned with the second centre Z2(U). Our main result there
is Theorem 3.5, which characterizes T whenever Z2(U) is not contained in
CU (T ).

2 Hypercentre

We begin with two lemmas which will be required later. The proof of
the first follows familiar lines but will be included for completeness.

Lemma 2.1

If u is a hypercentral unit of finite order in ZG then u is trivial.

Proof

Say u ∈ Zn(U) is of finite order. Since u∗ ∈ Zn(U) is also of finite order,
and the torsion elements of the nilpotent group Zn(U) form a subgroup, uu∗

must be of finite order. But uu∗ has nonzero identity coefficient, so uu∗ = 1
([9], p.277). Hence u ∈ ±G.
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Lemma 2.2

Assume the torsion elements of G form a subgroup T . Then Z̃(U) ⊆
NU (T ).

Proof

We will prove by induction on n that Zn(U) ⊆ NU (T ) for all n ≥ 1. The
case n = 1 is obvious, so assume that the result holds for n = k, k ≥ 1.

Let u ∈ Zk+1(U). If t ∈ T , then utu−1 = tα for some α ∈ Zk(U). By the
induction hypothesis, α ∈ NU (T ). Since tm = 1 for some m, 1 = utmu−1 =
(utu−1)m = (tα)m = t1α

m for some t1 ∈ T . Thus αm ∈ T , and so α is a
hypercentral unit of finite order. Lemma 2.1 says α ∈ ±T and so u ∈ NU (T )
as desired.

The weaker property mentioned in the introduction now follows easily.

Theorem 2.3

Assume the torsion elements of G form an Abelian subgroup T and
Z(G/T ) has only trivial units. Then Z̃(U) ⊆ G · CU (T ).

Proof

Let u ∈ Z̃(U). Lemma 2.2 tells us that u ∈ NU (T ), and thus ug ∈ NU (T )
for every g ∈ G. Since Z(G/T ) has only trivial units, we know that ug ∈
1 + (ZG)∆T (∗) for some g ∈ G. We will complete the proof by showing
ug ∈ CU (T ).

Let t ∈ T and ug as above. Then (ug)t(ug)−1 = t′, i.e. (ug)t = t′(ug)
for some t′ ∈ T . This together with (∗) gives that t + αt = t′ + t′α for some
α ∈ (ZG)∆T . Focusing on elements of T , we get that (t − t′)(1 + β) = 0
for some β ∈ ∆(T ), i.e. (1− t−1t′)(1 + β) = 0. But this is impossible unless
t = t′ and we are done.

Our investigation of the stronger property Z̃(U) ⊆ G ·Z(U) proceeds via
an intermediate step. We first show that Z̃(U) ⊆ NU (G) for a certain class
of groups, and then note that the normalizer property NU (G) = G · Z(U)
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holds for these groups. Until recently it was an open problem as to whether
this latter property holds in general. While a counterexample has recently
been found [3], the property does hold for many groups and we use that here
(see [9] for more detail on the normalizer problem).

Lemma 2.4

Let G be a group with the property that whenever x, y ∈ G, there exists
an integer n (depending on x and y) such that xn and y commute. Then
Z̃(U) ⊆ NU (G)

Proof.

Using an argument similar to that seen in the proof of Lemma 2.2, we
will prove by induction that Zn(U) ⊆ NU (G) for all n ≥ 1. If n = 1, the
result is obvious. So assume the result holds for n = k, k ≥ 1, and let
u ∈ Zk+1(U).

If g ∈ G, then ugu−1 = gα for some α ∈ Zk(U). By the induction
hypothesis, α ∈ NU (G). Since some power gm of g commutes with u, we
have

gm = ugmu−1 = (gα)m = g1α
m

for some g1 ∈ G.

So αm ∈ G, and thus αm(αm)∗ = 1. But α ∈ NU (G) implies α∗α is
central ([9], p.31), and so α∗α = αα∗. Thus we have (αα∗)m = 1 and so αα∗

is a central unit of finite order. Hence αα∗ ∈ G, so α ∈ G and u ∈ NU (G)
as desired.

FC groups satisfy the conditions of Lemma 2.4. In the next result, parts
(i) and (ii) could be stated more generally but we have opted for conciseness.

Proposition 2.5

The inequality Z̃(U) ⊆ G · Z(U) holds in each of the following cases:

(i) G is FC and has no 2-torsion.

(ii) G is FC and is locally nilpotent.
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(iii) The torsion elements of G form an Abelian subgroup T contained in
the FC subgroup of G and G =< T, g >.

(iv) G = T oX where T is finite Abelian and X is torsion free Abelian.

Proof

(i) and (ii) follow immediately from Lemma 2.4 and Theorem 2 of [4].

Assume we are in case (iii) and u ∈ Z̃(U). Since the conditons of Lemma
2.4 are satisfied, u ∈ NU (G). But now Theorem 1.4 of [4] says that u = giu0

where u0 ∈ ZT . Because u0gu−1
0 ∈ G and u0gu−1

0 − g ∈ [ZG,ZG], u0gu−1
0

and g must be conjugate in G and hence in T . We have u0gu−1
0 = t−1

0 gt0
for some t0 ∈ T . Hence t0u0 ∈ Z(U) and we have our result.

Finally assume we are in case (iv) and u ∈ Z̃(U). Again Lemma 2.4
says u ∈ NU (G). Theorem 1.4 in [4] tells us that u = gu0 where u0 ∈ ZT
and g ∈ G. Let H = CG(T ) and K = H ∩X. Observe that K is a central
subgroup of G and that G = G/K ∼= T o (X/K) is a finite metabelian
group. Since u0 ∈ CG(T ), we can conclude from Corollary 2.6 of [6] that
conjugation in G by u0 is an inner automorphism. It follows that u0g

−1
0 is

central in ZG for some g0 ∈ G.

We claim that u0g
−1
0 is a central unit in ZG. Let h ∈ G. Since

u0g
−1
0 ∈ NU (G), we have seen that [u0g

−1
0 , h] ∈ K. However it is obvi-

ous that [u0g
−1
0 , h] ∈ G′. Since G′ ⊆ T and T ∩K = 1, our result follows.

Note that while cases (iii) and (iv) are examples of the family of groups
discussed in Theorem 2.3, cases (i) and (ii) give additional information about
the weaker result Z̃(U) ⊆ G · CU (T ) as well. We conjecture that Z̃(U) ⊆
G · CU (T ) holds whenever G is an FC group.

The next lemma is needed to prove Theorem 2.7.

Lemma 2.6

(a) Assume < t > / G for any torsion element t of G. Then if u is a
hypercentral unit in ZG, utu−1 = t or t−1 for any torsion element t of
G. Moreover, if utu−1 = t−1 then the order of t is a power of 2.
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(b) Assume < t > / G for any torsion element t of G. Assume as well that
the torsion elements of G form an Abelian subgroup T of G. Then
if u is a hypercentral unit in ZG, either utu−1 = t for all t ∈ T or
utu−1 = t−1 for all t ∈ T . In the latter case, T is a 2-group.

Proof.

(a) Note that the given condition implies that the torsion elements of G
form a subgroup T of G.

Say u ∈ Zn(U) and t ∈ T . By Lemma 2.2 we know that utu−1 ∈ T .
Since utu−1 = 1 in Z(G/ < t >), we conclude further that utu−1 = ti

for some integer i, 1 ≤ i ≤ o(t)−1. For convenience we set l = φ(o(t)),
where φ denotes the Euler phi function, in the rest of this proof.

Say ti 6= t, t−1. In that case

b = (1 + t + · · ·+ ti−1)l +
1− il

o(t)
t̂

is a nontrivial Bass cyclic unit ([9], p.34) in Z < t >⊆ ZG, and b is of
infinite order.

Note bu = (1 + ti + · · ·+ ti(i−1))l +
1− il

o(t)
t̂. In general,

bur
= (1 + ti

r
+ · · ·+ ti

r(i−1))l +
1− il

o(t)
t̂

for any r.

It follows that bbu · · · bul−1
is equal to (1+ t+ · · ·+ ti−1)l(1+ ti + · · ·+

ti(i−1))l · · · (1 + ti
l−1

+ · · · + ti
l−1(i−1))l + mt̂ for some integer m, and

this product is equal to (1 + t + t2 + · · · + ti
l−1)l + mt̂ = 1 + m1t̂ for

some integer m1 (since il ≡ 1(mod o(t))). Since b has augmentation
1, we conclude that m1 = 0 and so

bbu · · · bul−1
= 1.

Now u ∈ Zn(U), so bur ≡ b(mod Zn−1(U)) for all r, and we conclude
that bl ∈ Zn−1(U).
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Next observe that

1 = (bbu · · · bul−1
)l = bl(bl)u · · · (bl)ul−1

since all bur
are in Z < t > and thus they commute with one another.

Since bl ∈ Zn−1(U), we conclude as above that bl2 ∈ Zn−2(U). Contin-
uing we eventually get that bs = 1 for some s ≥ 1, contradicting the
fact that b is of infinite order.

So ti = t or t−1 as desired.

For the second part, observe that if u ∈ Zn(U) and utu−1 = t−1

then t2 ∈ Zn−1(U). Since ut2u−1 = t−2, t4 ∈ Zn−2(U). This process
continues and gives the result.

(b) From (a) we know that if u is a hypercentral unit and t ∈ T then
utu−1 = t or t−1. Say we have ut1u

−1 = t1 and ut2u
−1 = t−1

2 for some
t1, t2 ∈ T where t1 6= t−1

1 and t2 6= t−1
2 . We know ut1t2u

−1 = t1t
−1
2 .

But we also must have ut1t2u
−1 = t1t2 or (t1t2)−1, and t1t

−1
2 = t1t2

and t1t
−1
2 = t−1

1 t−1
2 both lead to a contradiction. Now the second part

follows immediately from (a).

As mentioned in the introduction, when G is torsion a complete descrip-
tion of Zn(U) ∩G has been obtained for all n (of course Zn(U) = Z2(U) =
Z̃(U) for all n ≥ 2 in this case). In general, if we are fortunate enough to
have U(ZG) = G · Z(U) (as is the case when U is nilpotent, see Theorem
6.3.23 in [8]) then it is easy to see that Zn(U) = Zn(G) ·Z(U) for all n > 1.
We also have

Theorem 2.7

Assume that the torsion elements of G form an Abelian subgroup T . In
addition, assume every finite subgroup of G is normal in G and G =< T, g >.

(i) If gtg−1 = t±1 for all t ∈ T , then Zn(U) = Zn(G) · Z(U) for all n ≥ 1.

(ii) In all other cases, Zn(U) = (T ∩ Zn(G)) · Z(U) for all n ≥ 1.
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Proof

Note that the given conditions imply that U(ZG) = G · U(ZT ) ([8],
Chapter VI).

Case (i) follows from above because under our assumption any unit u in
ZT can be written as α1t where α1 is central ([9], p.10), and thus U(ZG) =
G · Z(U).

Now assume we are in case (ii). We proceed by induction on n. If n = 1
we’re done, so assume the result holds for n = k, k ≥ 1.

If t ∈ T ∩ Zk+1(G), then tgt−1 = gtj (since < t > / G) where tj ∈
T ∩ Zk(G). The induction hypothesis says that tj ∈ Zk(U) and, using
U(ZG) = G · U(ZT ), we conclude that t ∈ Zk+1(U), giving containment in
one direction.

So now consider the other containment. Proposition 2.5 tells us that
Zk+1(U) ⊆ G · Z(U), and the proof will be completed if we show that the
first term in the product on the right can be chosen in T ∩Zk+1(U), since it
is easy to see that G ∩ Zn(U) ⊆ Zn(G) for all n ≥ 1. To this end, assume a
typical group element t1g

k, t1 ∈ T , belongs to G ∩ Zk+1(U). It follows from
Lemma 2.6(b) that (t1gk)−1t(t1gk) = g−ktgk equals t or t−1 for all t ∈ T .
If g−ktgk = t were true for all t then gk would be central and we would be
done. So we can assume that t1g

k ∈ G ∩ Zk+1(U) and g−ktgk = t−1 for all
t ∈ T (and also T is a 2-group).

Since we are not in case (i), there must exist t0 ∈ T such that gt0g
−1 = tl0

where l is odd, 1 < l < o(t0)− 1. It follows that o(t0) = 2m for some m ≥ 3.

Also gt0g
−1 = tl0 and gkt0g

−k = t−1
0 imply that k must be even (the

order of g as an automorphism of < t0 > must divide φ(2m) = 2m−1 and be
≥ 4, while 2k is divisible by this order). Now gkt0g

−k = tl
k

0 , so 2m divides
1 + lk. But lk ≡ 1(mod 4), contradicting the fact that o(t0) is divisible by
4. We conclude that this situation cannot occur, and the proof is complete.

3 Second Centre

All results so far have concerned Zn(U) where n is any natural number.
As mentioned earlier, when G is torsion this is equivalent to proving results
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about Z2(U), but this is not true in general. Some of the observations made
earlier can be sharpened in the particular case n = 2. Our main result
is Theorem 3.5 which characterizes T whenever Z2(U) is not contained in
CU (T ).

The first result demonstrates a sharpening of Lemma 2.6.

Lemma 3.1

(a) If t ∈ G is of finite order and u ∈ Z2(U), then utu−1 = t or t−1.
Moreover, if utu−1 = t−1 then the order of t divides 4.

(b) Assume the torsion elements of G form an Abelian subgroup T of G.
Then if u ∈ Z2(U), either utu−1 = t for all t ∈ G or utu−1 = t−1 for
all t ∈ T . In the latter case, the exponent of T divides 4.

Proof.

(a) Let u, t be as stated, and assume tn = 1. Note that utu−1 = tz where
z ∈ Z(U), and tn = 1 implies zn = 1 also, so z ∈ T and un commutes
with t.

Consider the unipotent unit v = 1 + (1 − t)ut̂. We know that un

commutes with v. On the other hand uv = vuc for some c ∈ Z(U), so
cn = 1. It follows that u commutes with vn. But vn = 1 + n(1− t)ut̂,
and we conclude that u commutes with v.

So u(1− t)ut̂ = (1− t)ut̂u, or (1− t)ut̂u−1 = (1− u−1tu)t̂.

Earlier in the proof we observed that utu−1 and u−1tu are both in T .
It follows that utu−1 ∈< t >.

Now exactly the same argument as in the proof of Lemma 2.6(a) can
be used. If utu−1 = ti 6= t, t−1, we can construct a nontrivial Bass
cyclic unit

b = (1 + t · · ·+ ti−1)φ(o(t))
+

1− iφ(o(t))

o(t)
t̂.

We have bbu · · · buφ(o(t))−1
= 1, and this leads to the contradiction that

b is of finite order.
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So utu−1 = t or t−1 as desired. The last statement follows from
utu−1 = t(t−2), which forces t2 to be central.

(b) This follows in exactly the same way as in the proof of Lemma 2.6(b).

We require the following observation concerning unipotent units.

Lemma 3.2

Assume t ∈ G is of finite order and u ∈ Z2(U). Then for any α ∈ ZG, u
commutes with the unipotent unit v = 1 + (1− t)αt̂.

Proof.

We know uv = vuc for some c ∈ Z(U). So uv2 = v2uc2.

But v2 = 1 + 2(1 − t)αt̂ = 2v − 1. Substituting we get u(2v − 1)u−1 =
(2v − 1)c2, or 2vc− 1 = 2vc2 − c2. This means that

2(1− v)(c2 − c) = 2(c2 − c) + (1− c2) = (c− 1)2.

Note that (1 − v)2 = 0, so we get (c − 1)4 = 0. Since ZG contains no
nonzero central nilpotent elements, this gives c = 1 and we’re done.

The following technical lemma will be needed in what follows.

Lemma 3.3

Assume that the set of torsion elements of G is a subgroup T of G and
< t1 >6 T for some t1 ∈ T . Then [t, u] ∈< t1 > for all u ∈ Z2(U) and all
t ∈ T . In addition, either [t, u] = 1 or [t, u] is the unique (central) element
of order 2 in < t1 > and, in the latter case, t2 = [t, u].

Proof.

Choose u ∈ Z2(U) and t ∈ T .

First assume that tt1t
−1 /∈< t1 >. In that case, v = 1 + (1 − t1)t−1t̂1

is a nontrivial bicyclic unit and Lemma 3.2 tells us that uvu−1 = v. So
1 + (1 − ut1u

−1)(ut−1u−1)t̂1 = 1 + (1 − t1)t−1t̂1. Again using Lemma 3.1,
we conclude that either [t, u] = 1 or utu−1 = t−1 and, in the latter case,
t = t−1ti1 for some i and [t, u] = t2 = ti1 is central of order 2.
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Next assume that tt1t
−1 ∈< t1 >. We know there exists t2 ∈ T such

that t2t1t
−1
2 /∈< t1 > and the above paragraph tells us that [t2, u] ∈< t1 >.

Similarly (t2t)t1(t2t)−1 /∈< t1 > implies [t2t, u] ∈< t1 >. Since [t2, u] and
[t2t, u] are both central, [t, u] ∈< t1 > also and the other results follow easily.

One of the questions completely settled for torsion groups in [7] is that
of determining when Z2(U) 6= Z(U). Information on this for more gen-
eral groups can be deduced from the earlier results as well as the following
example, in which a family of groups with Z2(U) 6= Z(U) are constructed.

Example 3.4

Let A be an Abelian group containing an element h of order 4. Let
G =< A, x|xax−1 = a−1 for all a ∈ A, x2 = h2 >, i.e. G is like a Q∗-group
but may contain elements of infinite order. Then the argument outlined in
the first paragraph of the proof of Theorem 2 in [7] shows that h ∈ Z2(U)
but h /∈ Z(U).

We will close with our main result, which deals with the weaker question
of when Z2(U) * CU (T ).

Theorem 3.5

Assume that the set of torsion elements of G is a subgroup T of G.
If Z2(U) * CU (T ), then T is either an Abelian group of exponent 4 or a
Q∗-group.

Proof.

If T is Abelian, we know from Lemma 3.1(b) that it must be of exponent
4.

Assume T is Dedekind group, i.e. T ∼= K8 × E2 × E1
2 where E2 is

an elementary Abelian 2-group and E1
2 is a group of odd order. Let u ∈

Z2(U)\CU (T ). Then Lemma 3.1(a) says utu−1 = t for all t ∈ E2 × E1
2 , so

there exists x ∈ K8 of order 4 such that uxu−1 = x3. Say it is possible to
choose y 6= 1 in E1

2 of prime order p. Since xy is of order 4p, uxyu−1 =
xy. But uxyu−1 = x3y. This contradiction tells us that T ∼= K8 × E2, a
Hamiltonian 2-group, and this is a Q∗-group.
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So assume now that there exists t1 ∈ T with < t1 >6 T . Again let
u ∈ Z2(U)\CU (T ). Let H = {t ∈ T |[t, u] = 1}. We know H 6= T and, using
Proposition 4.1(a), it is easy to see that H / T . Moreover, if x, y ∈ T\H
then [x, u] = [y, u] is central of order 2 by Lemma 3.3, so [xy, u] = 1 and
xy ∈ H. Thus |T/H| = 2.

If a ∈ T\H and x ∈ H, then a2 = (ax)2 by Lemma 3.3 so axa−1 = x−1.
If in addition y ∈ H then aya−1 = y−1 and axya−1 = (xy)−1 = y−1x−1. So
x−1y−1 = y−1x−1 and H is Abelian.

Finally, observing that T/H2 is Abelian we conclude that if [t, u] 6= 1
then [t, u] ∈ H2. This completes the proof that T is a Q∗-group.

It is easy to see that both possibilities can occur. If G is a Q∗-group, then
Z2(U) 6= Z(U) ([7] or Example 3.4) and also G = T , so Z2(U) * CU (T ).
Also, if G =< t, g|t4 = 1, gtg−1 = t3 > then Theorem 2.7 says that t ∈
Z2(U).
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