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Abstract. Let L be a torsion loop for which the integral loop ring ZL is an
alternative, but not associative, ring. Let NU denote the normalizer of L in the
unit loop U(ZL). We show that NU (L) = Z(U)L, Z(U) the centre of U(ZL), and
use this fact to show that U(ZL) has central height 1, unless L is a hamiltonian
2-loop.

1. Introduction

A Moufang loop is an RA loop if the loop ring RL is alternative, but not associa-
tive, for any commutative associative ring R with unity [2, Corollary IV.1.2]. That
there are such loops was first noticed in 1983 [3]. By now, the theory of RA loops is
well developed and described in the monograph [2], which is the primary reference
for this paper.

If L is a loop, the integral loop ring of L is denoted ZL. If ZL is an alternative
ring, the invertible elements or units in ZL form a Moufang loop which we denote
U(ZL). This loop contains L as a subloop, but rarely as a normal subloop. Indeed,
the first author and Polcino Milies have shown recently that an RA loop L is normal
in U(ZL) if and only if U(ZL) = ±L [4]. In this paper, we turn to a related question
and ask what is the largest subloop of U(ZL) in which L is normal; that is, what is
the normalizer of L in U(ZL)?

Denote this normalizer NU (L) and let Z(U) denote the centre of U(ZL). Clearly
L is normal in Z(U)L, so Z(U)L ⊆ NU (L). The normalizer conjecture says that
there is equality here, that is, NU (L) = Z(U)L. In this paper, the conjecture is
established in the case that L is a torsion RA loop.

While the normalizer conjecture in the associative case is false in general [5], it
is true for various classes of groups and a property of interest to people who study
group rings. It was proven first for finite nilpotent groups by D. B. Coleman [1] and
later, for finite groups which have a normal Sylow 2-subgroup by S. Jackowski and
Z. Marciniak [6]. Recently, the second author, together with M. M. Parmenter and
S. K. Sehgal, obtained the result for finite groups whose nonnormal subgroups have
nontrivial intersection [7].

1991 Mathematics Subject Classification. Primary 20N05; Secondary 17D05, 16S34, 16U60.
Research supported in part by grants from the Natural Sciences and Engineering Research

Council of Canada.
September 15, 2003.

1



2 EDGAR G. GOODAIRE AND YUANLIN LI

Section I.1 and Chapter II of [2] provide more than enough background in alter-
native rings and loops for the purposes of this paper. Here, we present briefly some
ideas of particular importance. An alternative ring is a ring which satisfies both
identities

x(xy) = x2y, (yx)x = yx2.

A Moufang loop is a loop which satisfies any of the three equivalent identities

x(y · xz) = (xy · x)z, x(y · zy) = (xy · z)y, (xy)(zx) = (x · yz)x.

The centre of an alternative ring or a Moufang loop is the set of elements which
commute with all other elements and associate with all other pairs of elements. An
alternative ring or an Moufang loop is diassociative in the sense that the subring (or
subloop) generated by any two elements is associative. Consequently, nonassociative
products involving just two elements and perhaps additional elements from the
centre do not require the insertion of parentheses to indicate order of multiplication.

Let L be a Moufang loop. For x ∈ L, the right and left translation maps
R(x), L(x) : L → L are defined by

aR(x) = ax, aL(x) = xa

for a ∈ L. For x, y ∈ L, define inner maps T (x), R(x, y) and L(x, y) by

T (x) = R(x)L(x)−1

R(x, y) = R(x)R(y)R(xy)−1

L(x, y) = L(x)L(y)L(yx)−1.

Each of these maps is a semiautomorphism θ, that is, (xyx)θ = xθyθxθ for all
x, y ∈ L [2, Theorem II.3.3], and it follows that

(1.1) (xn)θ = (xθ)n

for any x ∈ L and any integer n. A subloop N of L is normal if Nθ ⊆ N for
any inner map θ. In a Moufang loop, L(x, y) = R(x−1, y−1) [2, Theorem II.3.3], so
one only has to check closure under maps of the form T (x) and R(x, y) to verify
normality.

2. The Normalizer Conjecture

Let α =
∑

`∈L α`` be an element of a loop ring RL. The support of α is the set
supp(α) of loop elements which actually appear in this representation of α:

supp(α) = {` | α` 6= 0}.
By definition of loop ring, all elements of RL have finite support. The augmentation
of α is the element ε(α) =

∑
α` ∈ R. If ` ∈ L has finite order n, we shall use the

notation ̂̀ for the element 1 + ` + `2 + · · ·+ `n−1 of RL:
̂̀= 1 + ` + `2 + · · ·+ `n−1.

Lemma 2.1. Let RL be an alternative loop ring, let α ∈ RL and suppose `α = α

for some ` ∈ L. Then ` has finite order n and there exists β ∈ RL such that α = ̂̀β.
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Proof. If g ∈ supp(α), then `ig ∈ supp(α) for all i. Since supp(α) is finite, ` has
finite order, say n, and α = ̂̀β1 +β2 for β1, β2 ∈ RL. Since `̂̀= ̂̀, so also `β2 = β2,
so the result follows by induction on | supp(α)|. ¤

Theorem 2.2. Let L be a torsion RA loop, let Z(U) denote the centre of the unit
loop U(ZL) and let NU (L) denote the normalizer of L in U(ZL). Then NU (L) =
Z(U)L.

Proof. Let A denote the centre of L. It is known that L/A is a finite elementary
abelian 2-group [2, Corollary IV.2.3]. Thus we may write L = ∪xi∈T Axi as the
disjoint union of cosets of A and, without loss of generality, assume that x1 = 1.
Let u ∈ NU (L). Then we can write

(2.1) u =
∑

xi∈T
αixi

with αi ∈ ZA. Letting α 7→ α denote the extension to ZL of the natural homo-
morphism L → L/A, we have u =

∑
αixi =

∑
ε(αi)xi ∈ Z[L/A]. By a theorem

of G. Higman, the abelian group ring Z[L/A] has only trivial units [2, Theorem
VIII.3.1], so ε(αi) = ±1 for precisely one i, while ε(αj) = 0 for j 6= i. Replacing
u by ±x−1

i u, it suffices to prove that a unit of the form (2.1) with ε(α1) = 1 and
ε(αi) = 0 for i 6= 1 is central in U(ZL).

Let L′ denote the commutator/associator subloop of L. It is known that L′ =
{1, s} for some central element s necessarily of order 2 [2, Theorem IV.1.8]. For any
` ∈ L, the commutator (u, `) = u−1`−1u` = `−1T (u) · ` ∈ L and the image of this
element in Z[L/L′] is the image of 1. It follows that (u, `) ∈ L′ = {1, s}. We claim
that (u, `) = 1 for any `. If this is not the case, then there exists ` ∈ L such that
u` = s`u. Hence,

∑

xi∈T
αixi` = s

∑

xi∈T
αi`xi =

∑

xi∈T
sαi(`, xi)xi`.

Since the commutators (`, xi) are central, we obtain
∑

xi∈T
αixi =

∑

xi∈T
sαi(`, xi)xi.

Comparing coefficients of x1 = 1 on both sides of this equation gives α1 = sα1 and
hence, by Lemma 2.1, that α1 = ŝβ for some β ∈ ZL with β 6= 0 because ε(α1) = 1.
Taking augmentations gives the contradiction 1 = 2ε(β).

It follows that u commutes with every element of L. In the loop ring of an RA
loop, this implies that u also associates with every pair of elements of L and hence
is central [2, Corollary III.4.2]. ¤

If L is a hamiltonian 2-loop, the unit loop of ZL is just ±L [2, Theorem VIII.3.1]
and of course L is normal in U(ZL). Conversely, suppose that the torsion RA loop
L is normal in U(ZL). Then U(ZL) = NU (L) = Z(U)L. It follows easily that the
commutator of two units and the associator of three units are a commutator and
an associator, respectively, in L. Thus the commutator/associator subloop [U(ZL)]′
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is the group L′, which has order 2. This forces L to be a hamiltonian 2-loop [2,
Corollary XII.2.14] and strengthens a result known previously in the case of finite
loops [4, Theorem 3.1].

Corollary 2.3. A torsion RA loop L is normal in the unit loop of ZL if and only
if L is a hamiltonian 2-loop.

3. Central Height

Just as in group theory, a Moufang loop L has an upper central series

{1} = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · ·
with Zi+1/Zi = Z(L/Zi). If this series terminates at L in a finite number of steps,
then L is called nilpotent. If L is an RA loop, it is known that U(ZL) is nilpotent if
and only if L is a hamiltonian 2-loop which is not associative [2, Corollary XII.2.14].
In this section, we show just how far from nilpotency is U(ZL) in the case that L
is not a hamiltonian 2-loop. Our main result (see Theorem 3.3) is that if L is an
RA loop which is not a hamiltonian 2-loop, then U(ZL) has central height 1, that
is, Z2(U(ZL)) = Z1(U(ZL)) = Z(U(ZL)).

Lemma 3.1. Let L be a torsion RA loop. If L contains a noncentral element `0

such that 〈`0〉 is normal in U(ZL), then L is a hamiltonian 2-loop.

Proof. Choose x ∈ L such that x`0 = s`0x. Then s`0 = x`0x
−1 ∈ 〈`0〉 implies

s ∈ 〈`0〉. Let u be any unit of ZL. The commutator (u, `0) = (u−1`−1
0 u)`0 is in L

and its image in the abelian group ring Z[L/L′] is the image of 1, so (u, `0) ∈ L′.
Thus

(3.1) (u, `0) ∈ L′ = {1, s} ∈ 〈`0〉
and so

uT (`0) = `−1
0 u`0 = u(u, `0) ∈ L′u.

Since T (`0) is a semiautomorphism and uT (`0) = cu for some c ∈ L′, we have
u2T (`0) = (uT (`0))2 = c2u2 = u2 by (1.1), so

(3.2) (u2, `0) = 1.

Let x, y ∈ L with x of finite order. The element r = (1 − x)yx̂ satisfies r2 = 0, so
v = 1 + r is a unit (with inverse 1− r), a so-called bicyclic unit, (See [2, §VIII.2].)
Now v2 = 1 + 2r and v2`0 = `0v

2 by (3.2), so r`0 = `0r. Hence

(3.3) (v, `0) = 1.

In an RA loop, a subloop is normal if and only if it is central or it contains s [2,
Corollary IV.1.11].

Suppose there exists ` ∈ L with 〈`〉 not normal. Suppose also that ``0 6= `0` (thus
`0` = s``0) and consider the bicyclic unit

v = 1 + (1− `)`0
̂̀= 1 + `0(1− s`)̂̀= 1 + `0(1− s)̂̀.
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By (3.3), `2
0(1− s)̂̀= `0(1− s)̂̀̀ 0, that is,

`0(1− s)̂̀= (1− s)̂̀̀ 0.

This gives `0` = `i`0 for some i, so s``0 = `i`0 and s = `i−1 ∈ 〈`〉 contradicting the
fact that 〈`〉 is not normal in L. All this proves that if ` ∈ L and 〈`〉 is not normal
in L, then ` and `0 must commute.

An RA loop M has the so-called LC property : g, h ∈ M commute if and only if
g ∈ Z(M) or h ∈ Z(M) or g = zh for z ∈ Z(M) [2, §IV.2]. Here then, we have
` = z`0 for some z ∈ Z(L).

Since `0 is not central, there exists x ∈ L with x`0 6= `0x, and hence x`0 = s`0x.
Consider the bicyclic unit

v = 1 + (1− `)x̂̀= 1 + x(1− s)̂̀.
Using (3.3), we have `0x(1− s)̂̀= x(1− s)̂̀̀ 0, so sx`0(1− s)̂̀= x(1− s)̂̀̀ 0. Thus
−`0(1− s)̂̀= (1− s)̂̀̀ 0 and

(3.4) 2(1− s)̂̀̀ 0 = 0

because `0 and `, and hence `0 and ̂̀, commute. As shown previously, an equation
like (3.4) gives `i = s` for some i, so s ∈ 〈`〉, a contradiction.

We have shown that 〈`〉 is normal in L for any ` ∈ L. It follows that L is
hamiltonian, hence the direct product C×E×A of the Cayley loop, C, an elementary
abelian 2-group, E, and an abelian group, A, all of whose elements have odd order
[2, Theorem II.4.8]. It remains to show that A is trivial.

Write `0 = cea with c ∈ C, e ∈ E and a ∈ A. Since `0 is not central, neither is
c, so c has order 4. Let n = o(a), the order of a. Then `n

0 = cne is not central. For
any inner map θ, we have (`n

0 )θ = (`0θ)n by (1.1); thus 〈`n
0 〉 is normal in U(ZL).

Replacing `0 by `n
0 , without loss of generality, we may assume henceforth that `0 is

an element of order 4 in C × E .
Assume A is not trivial and let a ∈ A have (odd) prime order p. Choose c ∈ C

with (`0, c) = s. Then g = ac = ca has order 4p. Also s = `2
0 = c2 = g2p and

`−1
0 g`0 = `−1

0 ca`0 = `−1
0 c`0a = c3a = c2p+1a2p+1 = g2p+1.

If p > 3, we form the Bass cyclic unit

(3.5) u = (1 + g + g2)2(p−1) +
1− 32(p−1)

4p
ĝ

(see [2, VIII.2.3]). By (3.1), we have either `−1
0 u`0 = u or `−1

0 u`0 = us = ug2p. In
the first case,

(1 + g2p+1 + g2)2(p−1) = (1 + g + g2)2(p−1),

which is impossible because the coefficient of g4p−1 is zero on the right hand side
but nonzero on the left. In the second case,

(1 + g2p+1 + g2)2(p−1) = (1 + g + g2)2(p−1)g2p,

which is impossible because the coefficient of g2p is 1 on the right but greater than
1 on the left. Thus p = 3.
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With p = 3, we have `−1
0 g`0 = g7 and o(g) = 12. This time, we consider the

Hoechsmann unit
u = (1 + g5 + g10 + g3 + g8)2 − 2ĝ

(see [8, p. 34]). As before, either `−1
0 u`0 = u or `−1

0 u`0 = su = ug6. In the first
case, we have

(1 + g11 + g10 + g9 + g8)2 = (1 + g5 + g10 + g3 + g8)2,

which is impossible because the coefficient of g is zero on the left hand side but
nonzero on the right. In the second case, we have

(1 + g11 + g10 + g9 + g8)2 = (1 + g5 + g10 + g3 + g8)2g6,

which is impossible because the coefficient of g6 is 1 on the right but 3 on the left.
It follows that A is trivial and the proof is complete. ¤
Lemma 3.2. Let L be a torsion RA loop. Let ` ∈ L be noncentral and suppose 〈`〉
is not normal in U(ZL). Then ` /∈ Z2(U).

Proof. Assume ` ∈ Z2(U). First of all, we claim that s /∈ 〈`〉. Let u ∈ U(ZL). Then
`−1u−1`u = (`, u) = z ∈ Z(U), so `T (u) = u−1`u = z`. Thus u−1`u commutes with
` and both these elements have finite order. It follows that z is a central torsion
unit and therefore trivial in the sense that z ∈ ±L [2, Corollary VIII.1.7]. Since the
augmentation of (`, u) is 1, in fact, z ∈ +L. Thus (u, `) ∈ L and, modulo L′, this
element is 1, so z = (u, `) ∈ L′ and `T (u) ∈ L′〈`〉.

Let u, v ∈ U(ZL). Then (`, u, v) = z′ ∈ Z(U), so `u · v = z′` · uv and `R(u, v) =
(`u · v)(uv)−1 = z′`. Thus `R(u, v) and ` are commuting elements of finite order (of
the same order, in fact, as shown by (1.1)), so z′ is a central torsion unit of ZL and
hence an element of L. As before, z′ ∈ L′. It follows that `θ ∈ L′〈`〉 for every inner
map θ. Since 〈`〉 is not normal in U(ZL), L′ 6⊆ 〈`〉, so s /∈ 〈`〉, as claimed.

Since ` is not central, there exists g ∈ L with (g, `) = s. Consider the bicyclic
unit

u = 1 + (1− `)ĝ̀.
Since (u, `) ∈ L′, (u2, `) = 1 as in the proof of Lemma 3.1. Furthermore, since
u = 1 + r with r2 = 0, it follows similarly that (u, `) = 1 and then that s = `i for
some i. This contradiction to the assumption ` ∈ Z2(U) completes the proof. ¤
Theorem 3.3. Let L be a torsion RA loop. If L is not a hamiltonian 2-loop, then
Z2(U) = Z1(U) (= Z(U)). If L is a hamiltonian 2-loop, Z2 = U(ZL) = ±L.

Proof. The second statement is just the assertion that in the hamiltonian 2-loop
case, U(ZL) is nilpotent of class 2. This is known [2, Corollary XII.2.14].

The proof of the first statement derives from the observation that L is normal
in Z2(U)L since `T (u) and `R(u, v) are both in L′〈`〉 for any u, v ∈ Z2, as in the
proof of Lemma 3.2. By Theorem 2.2, Z2(U) ⊆ Z(U)L. Now assume there exists
u ∈ Z2(U) \ Z1(U). Write u = z` with z ∈ Z(U) and ` ∈ L. Then ` ∈ L ∩ Z2(U)
is not central. By Lemma 3.2, 〈`〉 is normal in U(ZL). By Lemma 3.1, L is a
hamiltonian 2-loop, a contradiction. ¤
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