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In this note, we prove that if a torsion group G has an
abelian subgroup B such that G/B is abelian and R is a
G-adapted ring with the property that R(G/B) has only
trivial units then G has the normalizer property in RG.

2000 Mathematics subject classification (Amer. Math.
Soc.): primary 16U60, 20C05.

1 Introduction and Preliminary

Let G be a torsion group. A ring R is called a G-adapted ring if
R is an integral domain of characteristic 0 in which no prime dividing
the order of any element of G is invertible. Throughout this article
the coefficient ring R in the group ring RG is always assumed to be a
G-adapted ring. Let U(RG) be the group of units of the G-adapted
group ring RG and NU(G) be the normalizer of G in U(RG). Clearly,
NU(G) contains G and also contains Z = Z(U(RG)), the subgroup of
central units of U . Question 43 in [15] (i.e., the normalizer problem)
asks whether NU(G) = GZ when G is finite. If the above equality
holds, then we say that G has the normalizer property in RG. It was
believed that the equality holds for all finite groups until recently
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Hertweck found counterexamples to the problem. Using them and a
smart generalization of a result of Mazur [13], Hertweck constructed
a counterexample to the well-known isomorphism problem [2]. Since
the normalizer problem is intimately connected to the isomorphism
problem it is very much of interest to know which groups enjoy the
normalizer property. In the past few years, a great amount of work
on the problem has been done by several authors (see [3, 4, 6, 8, 9,
10, 11, 12, 14]). In this paper we prove that if a torsion metabelian
group G has an abelian subgroup B such that G/B is abelian and
R(G/B) has only trivial units, then G has the normalizer property in
RG. This extends a result of [9] (Proposition 2.20) on a finite group
basis G in its integral group ring, to any torsion group basis G in its
G-adapted ring.

Every unit u ∈ NU(G) induces an automorphism ϕ of G such that
ϕu(g) = ugu−1 for all g ∈ G. We now consider the subgroup AutU(G)
formed by all such automorphisms and it is not hard to see that the
normalizer problem described in [15] is equivalent to Question 3.7 in
Jackowski and Marciniak [5]:

“ Is AutU(G) = Inn(G) for all finite groups G?”

It is convenient to use this equivalent form to discuss the normal-
izer problem here and our notation follows that in [15].

Next we introduce some terminology and preliminary results.

Definition 1.1. Let G be a torsion group. A subgroup P is called
a Sylow p-subgroup of G for a prime number p, if P is a maximal
p-subgroup of G.

It is not hard to see that there exists a maximal p-subgroup of
G by Zorn’s Lemma. We remark that the Sylow theorems for finite
groups are no longer true in this context. For example, not all Sylow
p-subgroups are conjugates of one another. We need the following
two results. A proof for the first can be found in [7] (1.D.4 Lemma)
and the second is a special case of Theorem 9 of [14].

Lemma 1.2. If B is a normal subgroup of a locally finite group G
such that the quotient group G/B is a countable p-group for some
prime p then there is a p-subgroup P of G with BP = G.
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Lemma 1.3. Let G be a torsion group and P be any p-subgroup of
G. For any u ∈ NU(G), define ϕ ∈ Aut(G) such that ϕ(g) = ugu−1

for every g ∈ G as before. Then restricted to the subgroup P , the
automorphism ϕ becomes inner. Moreover, we have ϕ|P = conj(x0)|P
for some x0 ∈ supp(u) ⊂ G. In particular, if G is a p-group, then
AutU(G) = Inn(G), so the normalizer property holds for G.

We include a proof for completeness, and we note that the tech-
nique used in the following proof will be required later in the proof
of Lemma 2.2.

Proof. Let u =
∑

u(x)x ∈ NU(G), where u(x) ∈ R and x ∈ supp(u).
Without loss of generality, we may assume that the augmentation
of u is 1. For every group element g ∈ G, ϕ(g) = ugu−1 is also
a group element. Rewrite u = ϕ(g)ug−1, and hence

∑
u(x)x =∑

u(x)ϕ(g)xg−1(∗). This shows that ϕ(g)xg−1 is in the support of
u for all g ∈ G. Define a left group action σg of G on supp(u) as
follows: σg(x) = ϕ(g)xg−1. It follows from (∗) that u(x) is a constant
on each orbit of x. Restricting the action to P , we have that the p-
subgroup P acts on supp(u), and thus the length of every orbit must
be a p-power. It follows that

1 = ε(u) =
∑

cip
li ,

where ε is the augmentation map, pli is the length of the orbit of xi

and u(xi) = ci. Since p is not invertible in R, the above equality
shows that plj = 1 for some j; that is to say there is a fixed point of
this action, say x0. Therefore, we have ϕ(g)x0g

−1 = σg(x0) = x0 for
all g ∈ P . Consequently, ϕ(g) = x0gx−1

0 , and thus ϕ|P = conj(x0)|P .
We are done.

2 The Main Result

In this section, we extend our earlier result on a finite group basis
G (Proposition 2.20 in [9]) to any torsion group basis G. The main
result is as follows:
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Theorem 2.1. Let G be a torsion metabelian group and let B be an
abelian normal subgroup of G for which the quotient group A = G/B
is abelian. If RA has only trivial units then G has the normalizer
property in RG.

We prove Theorem 2.1 by means of the following two lemmas.

Lemma 2.2. Let G be a torsion metabelian group and let B be an
abelian normal subgroup of G for which the quotient group A = G/B
is abelian. Let Ap be the Sylow p-subgroup of A and Gp be the pre-
image of Ap in G. If RA has only trivial units, then for every ϕ in
AutU(G) the restriction of ϕ to Gp is inner.

Proof. Let u ∈ NU(G) and ε(u) = 1. Define ϕ to be the automor-
phism induced by u as before. We will show that the restriction of ϕ
to Gp is inner.

First we show that the restriction of ϕ to B is inner. Write
u =

∑n
i=0 αiai where the cosets aiB are pairwise distinct, a0 = 1,

and αi ∈ RB. Since RA has only trivial units, we have that in RA,
ū =

∑n
i=0 ε(αi)āi is trivial. Thus only one ε(αl) = 1 and the others

are zero. That is ε(αj) = 0 for all j 6= l. Multiplying by a−1
l b−1 for

any b in the support of αl if necessary, we may assume that ε(α0) = 1,
ε(αi) = 0 for all i 6= 0 and 1 ∈ supp(u). Now we show that ϕ(b) = b
for all b ∈ B (or ϕ|B = id|B). Since B is a normal subgroup and
u ∈ NU(G), we have that [u, b] = ubu−1b−1 ∈ G. By going mod B,
we obtain that [ū, b̄] = 1̄, and therefore, [u, b] ∈ B. Thus there exists
a b0 ∈ B depending on b such that ub = b0bu. This implies that
α0b = b0bα0, and therefore, α0(1− b0) = 0. This simply says that the
order of b0 divides ε(α0) = 1, forcing b0 = 1. Hence [u, b] = 1, and
thus ϕ(b) = b for all b ∈ B. We remark that because 1 ∈ supp(u), the
support of u is contained in the FC-centre of G by Corollary 1 in [14].
Since G is locally finite, it follows that the support of u is contained
in some finite normal subgroup H of G. Therefore, the support of α0

is contained in the finite normal subgroup H1 = B
⋂

H.
Next let P be any p-subgroup of G. We now show that the restric-

tion of ϕ to P is a conjugation by a group element b1, and moreover,
b1 ∈ supp(α0) ⊂ B. The first result follows from Lemma 1.3. To show
the second part, we use the same trick as that used in the proof of
Lemma 1.3. This time we need only define a group action of P on the
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support of α0, and then the fixed point b1 ∈ supp(α0) will do the job.
We observe that for every p ∈ P, ϕ(p)p−1 = upu−1p−1 ∈ B because
in RA, ¯ϕ(p) ¯p−1 = 1̄. Since up = ϕ(p)u and u =

∑n
i=0 αiai, we have∑n

i=0 αiaip =
∑n

i=0 ϕ(p)αiai. This shows that α0p = ϕ(p)α0 and thus
α0 = ϕ(p)α0p

−1. Write α0 =
∑

α0(b)b, where b ∈ supp(α0), α0(b) ∈
R. It follows that

∑
α0(b)b =

∑
α0(b)ϕ(p)bp−1. Now we can de-

fine a group action of P on supp(α0), sending every element b to
ϕ(p)bp−1(∈ supp(α0)). As before, we can show that there is a fixed
point b1 ∈ supp(α0). Therefore, ϕ(p) = conj(b1)(p) for all p ∈ P .
Since b1 ∈ B and B is abelian, we conclude that conj(b1)|B = id|B =
ϕ|B, and therefore, ϕ|BP = conj(b1)|BP .

Finally we prove that the restriction of ϕ to Gp is a conjugation
by a group element bp in the support of α0. For every finite subgroup
F of Gp, we can find a finite subgroup AF of Ap such that F is
contained in the pre-image of AF in G. By Lemma 1.2, there exists
a p-subgroup P of G such that this pre-image is equal to BP . It
follows that there is a bF in the support of α0 such that ϕ acts on F
as conjugation by bF . Since the support of α0 is finite, it is not hard
to see that one can find a bp which works for all F . In fact if this is
not true, then for each b in the support of α0 there is such a Fb so that
ϕ is not a conjugation by b on it. Therefore, for the finite subgroup
generated by the groups Fb for all b ∈ supp(α0), there would be no b
such that ϕ is a conjugation by b on it. This leads to a contradiction.
Note that Gp is the union of its finite subgroups, so the restriction
of ϕ to Gp is a conjugation by bp. Without loss of generality, for a
fixed p we may assume that ϕ|Gp = id|Gp . We note that the support
of α0 is still contained in H1, and what we just proved implies that
the order of ϕ is finite, so we may assume that ϕ has a prime power
order in the sequel.

Lemma 2.3. Let G be a torsion metabelian group and let B be an
abelian normal subgroup of G for which the quotient group A = G/B
is an abelian group of exponent 6. If RA has only trivial units then
G has the normalizer property in RG.

Proof. Let ϕ = ϕu ∈ AutU(G) where u =
∑n

i=0 αiai as before. We
now show that ϕ is inner. Let A = A2 × A3, and let Gp be the pre-
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image of Ap in G for p = 2 or 3 as before. As we mentioned earlier, we
may assume that the order of ϕ is a power of p. If p 6= 3, by Lemma
2.2 we may further assume that ϕ|G2 = id|G2 , ϕ|G3 = conj(b3)|G3 for
some b3 ∈ supp(α0) ⊂ H1, where H1 is the same subgroup as that
used in the proof of Lemma 2.2. Now we define a map δ from A to B
as follows: δ(a) = ϕ(g)g−1 for every a ∈ A, where g is any pre-image
of a in G. It is routine to check δ is well defined, δ(a) ∈ B, and δ(a)
is a 1−cocycle. We claim that δk(a) = ϕk(g)g−1. For k = 1, this is
clear. By induction, we assume that δk−1(a) = ϕk−1(g)g−1. Then

δk(a) = δk−1(a)δ(a) = ϕk−1(g)g−1ϕ(g)g−1 = ϕ(ϕk−1(g)g−1g)g−1 = ϕk(g)g−1.

Since o(ϕ), the order of ϕ, is a power of p and δo(ϕ)(a) = ϕo(ϕ)(g)g−1

= 1, we conclude that the order of [δ] is a power of p. On the other
hand, we will show that the order of [δ] is a power of 3. Therefore,
[δ] is trivial. We first note that the restriction of [δ] to A2 is triv-
ial. This is because for all a2 ∈ A2, δ(a2) = ϕ(g2)g

−1
2 = 1, where

g2 ∈ G2 is any pre-image of a2 in G, so ϕ(g2) = g2 by the above
assumption. Since H1 is a normal subgroup and H1 is contained in
the abelian subgroup B, we can define a group action of A3 on H1

by conjugation (i.e., for every a3 ∈ A3, ha3
1 = hg3

1 ∀h1 ∈ H1, where g3

is any pre-image of a3 in G). Because H1 is finite, some subgroup
C of A3 of finite index k acts trivially on H1. This means that the
pre-image of C in G centralizes H1. It follows that for every a3 ∈ C,
δ(a3) = ϕ(g3)g

−1
3 = b3g3b

−1
3 g−1

3 = 1, where b3 is in the support of α0

( ⊂ H1) as before. So the restriction of [δ] to C is also trivial. Now
write A3 = C × C ′, where the order of C ′, |C ′| = k, is a power of 3.
It is well known that the restriction of [δk] to C ′ is trivial. Thus [δk]
is trivial, and then the order of [δ] is a power of 3. Therefore, [δ] is
trivial and thus, δ is a coboundary. Now we conclude that ϕ is inner.

In the case that p = 3, we may assume that ϕ|G3 = id|G3 , ϕ|G2 =
conj(b2)|G2 for some b2 ∈ supp(α0) ⊂ H1. Following the same line
as that in the above, we can prove that ϕ is inner. Therefore, this
completes the proof.

Now we are ready to prove our main result (Theorem 2.1).
Since a G-adapted ring R is an integral domain of characteristic 0,

we may assume that Z the ring of all rational integers is a subring of
R. Because RA has only trivial units, ZA has only trivial units too.
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So it follows from Higman’s Theorem ([1], see also Theorem (2.7) in
[15]) that A is an abelian group of exponent 2, 3, 4 or 6. If A = G/B
is an abelian group of exponent 2, 4 or 3, then G = G2 or G = G3.
Therefore, the result follows from Lemma 2.2. In the case that A is
an abelian group of exponent 6, the result follows from Lemma 2.3.
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