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In this paper, we discuss two situations for which all C-automorphisms are
inner; therefore, the normalizer property holds for those cases. Our results
generalize a result of Marciniak and Roggenkamp ([8], Theorem 12.3). As
an application of our theorems, we prove that the normalizer property holds
for the integral group ring of a split finite metabelian group with a dihedral
Sylow 2-subgroup. Our results rely heavily on the methods of Marciniak and
Roggenkamp in [8].

1 Introduction

Let G be a group and U(ZG) be the group of units of the integral group
ring ZG. It is a classical problem in the theory of group rings to investigate
the normalizer NU(G) of G in U(ZG) (see [6, 13] for detail). It is clear that
NU(G) contains G and also contains Z = Z(U(ZG)), the subgroup of central
units of U .

Problem 43 in [13] asks whether NU(G) = GZ when G is finite. The
equality was first shown to hold for finite nilpotent groups by Coleman [1],
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and later extended by Jackowski and Marciniak [5] to all finite groups hav-
ing a normal Sylow 2-subgroup. In particular, this property holds for all
finite groups of odd order. Mazur perceived that there is a close relation
between this question and the isomorphism problem (see Mazur [9, 10, 11]).
Hertweck first found counterexamples to the normalizer problem, and then,
using them and a clever generalization of Mazur’s results, he managed to
construct a counterexample to the isomorphism problem ([2, 3, 4]). Because
of the connection to the isomorphism problem, it is still of interest to know
which groups enjoy the normalizer property.

Recently, Parmenter, Sehgal and the author [7] proved that the normal-
izer property holds for any finite group G such that R(G) is not trivial,
where R(G) denotes the intersection of all nonnormal subgroups of G. In the
meanwhile, Marciniak and Roggenkamp [8] proved that this property holds
for finite metabelian groups with an abelian Sylow 2-subgroup. In this pa-
per, we discuss two important situations for which all C-automorphisms are
inner; therefore, the normalizer property holds for those cases (Theorems 2.8
and 2.17). Using these, we extend the above mentioned result of Marciniak
and Roggenkamp to some metabelian groups with not necessarily abelian Sy-
low 2-subgroups. For example, we prove that the normalizer property holds
for the integral group ring of a split finite metabelian group with a dihedral
Sylow 2-subgroup. Our results rely heavily on the methods of Marciniak and
Roggenkamp in [8].

2 The normalizer NU(G) for metabelian

groups

Any unit u ∈ NU(G) determines an automorphism ρ = ρu of G such that
ρ(g) = ugu−1 for all g ∈ G. We now consider the subgroup AutU(G) formed
by all such automorphisms and it is not hard to see that the normalizer
problem described in [13] is equivalent to Question 3.7 in Jackowski and
Marciniak [5]:

“ Is AutU(G) = Inn(G) for all finite groups?”

It is convenient to use this equivalent form to discuss the normalizer
problem here, and we will describe some finite metabelian groups for which
the normalizer property holds.
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Every automorphism in AutU(G) automatically satisfies several proper-
ties described by Coleman and the following definition was introduced by
Marciniak and Roggenkamp in [8].

Definition 2.1. An automorphism ρ of a finite group G is called a Coleman
automorphism, or a C-automorphism for short, if ρ2 = ρ ◦ ρ is inner, ρ
preserves the conjugacy classes in G and for every Sylow p-subgroup P of G,
we have ρ|P = conj(g)|P for some g ∈ G.

Remark 2.2. Our interest in those automorphisms comes from the fact that
all automorphisms in AutU(G) are C-automorphisms. Therefore, if all C-
automorphisms of G are inner, then the normalizer property holds for G.

We first describe a necessary and sufficient condition for a C-automorphism
of a metabelian group to be inner.

Proposition 2.3. Let G be a metabelian group and let B be an abelian
normal subgroup of G for which the quotient group A = G/B is also abelian.
Then a C- automorphism ρ of G is inner if and only if ρ|B∪P = conj(g)|B∪P

for some g ∈ G, where P is a Sylow 2-subgroup of G.

The proof is standard, but we include it for completeness.

Proof. One direction is clear. Let ρ be a C-automorphism of G such that
ρ|B∪P = conj(g)|B∪P . Substituting for ρ a new C-automorphism ρ◦conj(g−1),
we have ρ|B = id|B and ρ|P = id|P . Note that the subgroup generated by
B and P is exactly the preimage H of A2 in G; i.e. H = 〈B, P 〉. Thus
ρ|H = id|H(∗). Since ρ preserves conjugacy classes, obviously it induces the
identity on A. Now we define a map δ : A −→ B by δ(a) = ρ(y)y−1 for
all a ∈ A, where y is any preimage of a in G. It is routine to check that δ
is well defined, δ(a) ∈ B, and δ is a 1-cocycle. Thus [δ] ∈ H1(A, B). Note
that H1(A, B) = H1(A2 × A′

2, B) = H1(A2, B) × H1(A′
2, B). We first note

that the restriction of [δ] to A2 is trivial. This is because for all a2 ∈ A2,
δ(a2) = ρ(h)h−1 = 1, where h is any preimage of a2 , so ρ(h) = h by assump-
tion (∗). Next let k = |A′

2|. It is well known that the restriction of [δk] to A′
2

is trivial. Thus [δk] is trivial and then δk is a coboundary. Therefore, ρk is
inner. Since ρ2 is inner and k is odd, it follows that ρ is inner.

Remark 2.4. Proposition 2.3 states that a C-automorphism ρ is inner if
and only if the restriction of ρ to the preimage H of A2 in G is inner (i.e. ρ
acts on H as conjugation by a group element).
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Proposition 2.3 can be easily rephrased to give the following.

Proposition 2.5. Let G be a metabelian group and let B be an abelian nor-
mal subgroup of G for which the quotient group A = G/B is also abelian.
Then the normalizer property holds for G if and only if for every ρ ∈ AutU(G),
ρ|B∪P = conj(g)|B∪P for some g ∈ G, where P is a Sylow 2-subgroup of G.

Corollary 2.6. Let G be a metabelian group and let B be an abelian normal
subgroup of G for which the quotient group G/B = A is abelian. If P is a
Sylow 2-subgroup of G, and P = B2 o D, where B2 is the Sylow 2-subgroup
of B and D is a 2-subgroup of G, then a C-automorphism ρ is inner if and
only if ρ|B = conj(g)|B for some g ∈ G.

Proof. The necessity is obvious.
Conversely, by multiplying by a conjugation of a group element, we may

assume that ρ|B = id|B. Since ρ is a C-automorphism, ρ|P = conj(h)|P .
Since ρ2 is inner, if some odd power of ρ is inner, then ρ is inner. By
taking some suitable odd power of ρ, we may assume that the order of ρ is a
power of 2 and h is a 2-element. Note that ρ permutes the set of all Sylow 2-
subgroups of G. As the order of ρ is a power of 2, and the number of permuted
groups is odd, this permutation action has a fixed point. That is to say there
exists a Sylow 2-subgroup P ′ of G such that ρ(P ′) = P ′. Without loss of
generality, we may assume that P ′ = P . We note that D is abelian since
every commutator [d, d1] in D has image the identity of A and thus [d, d1] ∈
D

⋂
B2 = 1. ρ(P ) = conj(h)(P ) = P and thus h is in the normalizer of P in

G. As h is a 2-element, it follows that h belongs to P . Now we write h = b2d
where b2 ∈ B2 and d ∈ D. Since id|B2 = ρ|B2 = conj(b2d)|B2 = conj(d)|B2 ,
we have that d ∈ C(B2). Moreover, as D is abelian, it follows that d ∈ C(P ).
Let ρ1 = conj(b−1

2 ) ◦ ρ. Then ρ1|B = conj(b−1
2 ) ◦ ρ|B = conj(b−1

2 )|B = id|B
and ρ1|P = conj(d)|P = id|P . It follows from Proposition 2.3 that ρ1 is inner.
Therefore ρ is inner and we are done.

Remark 2.7. G is called a split metabelian group if G is a semidirect product
of an abelian normal subgroup B of G by an abelian subgroup A of G, i.e.
G = BoA. We note that if G is a split metabelian group, then the assumption
on a Sylow 2-subgroup of G in Corollary 2.6 is automatically satisfied.

We now describe a family of finite metabelian groups for which the nor-
malizer property holds.
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Theorem 2.8. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is abelian.
If P = B2 o D and CA2(B2) = CA2(b2) for some b2 ∈ B2, where P is a
Sylow 2-subgroup of G, and B2 and A2 are the Sylow 2-subgroups of B and
A respectively, then every C-automorphism of G is inner, and therefore the
normalizer property holds for G.

We prove Theorem 2.8 by means of the following two lemmas.

Lemma 2.9. Let P be a finite abelian 2-group acting on a finite abelian
group M of odd order. Then there is an element m ∈ M such that CP (M) =
CP (m).

Proof. M can be regarded as a P (ZP )-module and thus M is a direct sum of
indecomposable P -submodules Mi, i.e. M =

∑
Mi. If for all submodules Mi,

CP (Mi) = CP (mi) for some mi ∈ Mi, then CP (M) = CP (m) for m =
∑

mi.
So it is enough to prove the lemma for M indecomposable. Let Q = CP (M).
Then M is a faithful R = P/Q -module. Suppose that the result is not
true. Then for any nonzero element m of M , CP (M) 6= CP (m). Thus there
exists an element p ∈ CP (m), p 6∈ CP (M) = Q, and then the image g of p
in R is not the identity. Therefore, we have that gm = m with m 6= 0 and
1 6= g ∈ R. Since g is a 2-element, by replacing g by the suitable power
of g, we can assume that g2 = 1. Note that multiplication by 1 − g is an
endomorphism of the R-module M , but it is not an isomorphism. By the
Fitting lemma ([12] 3.3.5, page 82) 1 − g is a nilpotent endomorphism of
M . Note that (1 − g)2k

= 21+2+···+2k−1
(1− g). Since the order of M is odd,

1 − g annihilates M , i.e. g ∈ CR(M) = 1. This contradiction finishes the
proof.

Remark 2.10. Lemma 2.9 remains true for any finite abelian p−group P
acting on a finite abelian group M of order prime to p.

Lemma 2.11. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is also abelian.
Suppose that the Sylow 2-subgroup A2 of A has the property that CA2(B2) =
CA2(b2) for some b2 ∈ B2 where B2 is the Sylow 2-subgroup of B. Then any
C-automorphism ρ of G acts as an inner automorphism of B, i.e. ρ|B =
conj(g)|B for some g ∈ G.
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Proof. B is a direct product of its Sylow subgroups Bp, which are normal
in G. Let ρ be a C-automorphism of G. It acts on each Bp as an inner
automorphism. As we mentioned earlier, by raising to a sufficiently high odd
power, we can assume that ρ is of 2-power order. We can also assume that
ρ acts on Bp as conjugation by a 2-element hp, acts on a Sylow 2-subgroup
P of G as conjugation by a 2-element h2 and that ρ2 is a conjugation by a
2-element. It is routine to check that ρ is a C-automorphism of the preimage
H of A2 in G (for example, it follows from Lemma 1 in [9] that ρ preserves
conjugacy classes in H), so we can assume that G = H, i.e. A = A2. Now
there exist bp ∈ Bp such that CA(Bp) = CA(bp) by Lemma 2.9 and our
assumptions. Let b =

∏
bp be the product of the bp’s. Then there is g ∈ G

such that gbg−1 = ρ(b). Hence
∏

gbpg
−1 = gbg−1 =

∏
ρ(bp) =

∏
hpbph

−1
p

and thus gbpg
−1 = hpbph

−1
p for all p. It follows that g−1hp centralizes bp.

Since this element acts on Bp as its image in A. we conclude that g−1hp

also centralizes BP . Now for any element b′ =
∏

b′p ∈ B, we have ρ(b′) =∏
ρ(b′p) =

∏
hpb

′
ph

−1
p =

∏
hp(h

−1
p g)b′p(g

−1hp)h
−1
p =

∏
gb′pg

−1 = gb′g−1. This
shows that ρ acts on B as conjugation by g.

Now Theorem 2.8 follows directly from Lemma 2.11 and Corollary 2.6.

Next we discuss several corollaries of Theorem 2.8 and Proposition 2.3.
The first one is the result proved by Marciniak and Roggenkamp ([8] Theorem
12.3).

Corollary 2.12. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is also abelian.
If a Sylow 2-subgroup P of G is abelian, then every C-automorphism of G is
inner.

Proof. First notice that CA2(B2) = A2 = CA2(b2) for any b2 ∈ B2. It follows
from Lemma 2.11 that for every C-automorphism ρ, ρ|B = conj(g)|B for some
g ∈ G. By conjugating by a group element, we may assume that ρ|B = id|B.
As we remarked earlier, we may also assume that the order of ρ is a power
of 2. Thus ρ fixes a Sylow 2-subgroup P of G. Now ρ|P = conj(h)|P . After
taking a suitable odd power of ρ, we may assume that h is a 2-element,
and therefore, h belongs to P . Since P is an abelian subgroup, we have
ρ|P = id|P . The result follows from Proposition 2.3.

Corollary 2.13. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is also abelian.
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If B2, the Sylow 2-subgroup of B, is cyclic, then the restriction to B of every
C-automorphism ρ of G is inner i.e. ρ|B = conj(g)|B for some g ∈ G. In
addition, if P = B2 o D where P is a Sylow 2-subgroup of G, then every
C-automorphism of G is inner.

Corollary 2.14. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is also abelian.
If P = C2n o C2, where P is a Sylow 2-subgroup of G and Cm is the cyclic
group of order m, then the restriction to B of every C-automorphism ρ of G
is inner i.e. ρ|B = conj(g)|B for some g ∈ G.

Proof. We need only show that CA2(B2) = CA2(b2) for some b2 ∈ B2. Let
P = C2n o C2 = 〈x〉 o 〈y〉. with x2n

= y2 = 1, xy = xi. We note that since
B2 is a subgroup of P , B2 can be generated by at most two elements of P .

Case 1, If B2 is cyclic, then it is obvious that CA2(B2) = CA2(b2) for some
b2 ∈ B2 being a generator of B2.

Case 2, If B2 = 〈xi, xjy〉 , then in the quotient group A2, x̄
j ȳ = 1, so

ȳ = x̄−j. It follows that A2 = 〈x̄, ȳ〉 = 〈x̄〉 is cyclic. Therefore A2 commutes
with xi, and thus CA2(B2) = CA2(x

jy).
In any case, we have proved that CA2(B2) = CA2(b2) for some b2 ∈ B2.

The corollary follows from Lemma 2.11.

The next result follows directly from Corollaries 2.6 and 2.14

Corollary 2.15. Let G = B o A be a split finite metabelian group, where B
is an abelian normal subgroup and A is abelian. If a Sylow 2-subgroup P of
G satisfies the condition P = C2n o C2, then every C-automorphism of G is
inner.

Remark 2.16. With the assumption of Corollary 2.15, in particular, if a
Sylow 2-subgroup of G is a dihedral group, then every C-automorphism is
inner. Therefore, the normalizer property holds for G.

Next we discuss another situation for which the normalizer property holds

Theorem 2.17. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is also abelian.
If A2, the Sylow 2-subgroup of A, is cyclic, then every C-automorphism of G
is inner.
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Proof. We first show that CA2(B2) = CA2(b2) for some b2 ∈ B2. Since A2 is a
cyclic 2-group, its subgroups are linearly ordered by inclusion. We can take
b2 to be any element b ∈ B2 such that CA2(b) is minimal. Now CA2(b2) =
∩CA2(b

′)(∀b′ ∈ B) = CA2(B2). It follows from Lemma 2.11 that for every
C-automorphism ρ of G, ρ|B = conj(g)|B for some g ∈ G.

Next we show that there exists a Sylow 2-subgroup P of G such that
ρ|P = conj(g)|P for the same g as above. As we remarked earlier, without
loss of generality, we may assume that ρ|B = id|B and the order of ρ is a
power of 2. Thus ρ fixes a Sylow 2-subgroup P of G and ρ|P = conj(h)|P .
For the same reason mentioned before, we may assume that h is a 2-element
and therefore, h ∈ P . It is clear that there is an element g ∈ P such that
P = 〈B2, g〉 and g maps to a generator a of A2. Write h = b2g

i where b2 ∈ B2.
As ρ|B2 = id|B2 , for all b ∈ B2 we have b = ρ(b) = conj(b2g

i)(b) = conj(gi)(b).
Thus gi ∈ C(B2). Since gi commutes with g, it follows that gi ∈ C(P ). Let
ρ1 = conj(b−1

2 ) ◦ ρ. Then

ρ1|B = conj(b−1
2 ) ◦ ρ|B = conj(b−1

2 )|B = id|B
and

ρ1|P = conj(gi)|P = id|P .

Applying Proposition 2.3 to our situation, we conclude that ρ is inner
and this finishes the proof.

The following corollary is the finite version of Theorem 2 in [7] which
holds for several families of groups such as dihedral groups and Q∗ groups.

Corollary 2.18. Let G = 〈H, g〉 be a finite group, where H is an abelian
subgroup of index 2. Then the normalizer property holds for G.

We close by noting that Mazur [9] showed that there exist finite metabelian
groups for which the normalizer property holds, but for which not all C-
automorphisms are inner. Another example is as follows:

Remark 2.19. In [8], Marciniak and Roggenkamp gave an example of a
finite metabelian group of order 384 (G ∼= (C4

2 × C3) o C3
2) for which there

exists a C-automorphism which is not inner.
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Proposition 2.20. Let G be a finite metabelian group and let B be an abelian
normal subgroup of G for which the quotient group G/B = A is also abelian.
If U(ZA) has only trivial units, then the normalizer property holds for G. In
particular, it holds for the group (C4

2 × C3) o C3
2 .

Proof. Let u ∈ NU(G). Then u = α0a0+
∑

αiai , where αi are in ZB, a0 = 1,
and all ai form a right transversal to B in G.

In Z(G/B) ∼= ZA, we have ū = ε(α0) +
∑

ε(αi)ai, where ε denotes the
augmentation map. Since Z(G/B) ∼= ZA has only trivial units, only one
ε(αl) = ±1 and the other ε(αi) = 0 for all i 6= l. Multiplying by ±a−1

l if
necessary, we can assume that ε(α0) = 1 and ε(αi) = 0 for all i 6= 0. Let ρ be
the automorphism of G such that ρ(g) = ugu−1 for all g ∈ G. We will show
that ρ|B∪P = conj(b1)|B∪P for some b1 ∈ B, where P is a Sylow 2-subgroup
of G. Thus the result follows from Proposition 2.5. Since ρ preserves the
conjugacy classes in G, it follows that ρ(b) ∈ B for every b ∈ B. So there
exists b0 ∈ B such that b0bu = ub. This implies that b0bα0 = α0b. Therefore,
(b0 − 1)α0 = 0. This means that ε(α0) is divisible by the order of b0, forcing
b0 = 1. Hence [u, b] = 1 for every b ∈ B and then ρ|B = id|B. Next
rewrite u =

∑
u(x)x where u(x) ∈ Z and x ∈ G. Since u = ρ(g)ug−1,

we have
∑

u(x)x =
∑

u(x)ρ(g)xg−1(∗). Note that ρ(g)xg−1 ∈ B provided
that x ∈ B. We can define a group action σh of P on the set B as follows:
σh(x) = ρ(h)xh−1 for all x ∈ B. It follows from (∗) that u(x) is a constant
on each orbit of x. Since P is a 2-subgroup, every orbit of this action must
have a 2-power length. Therefore, we have that

1 = ε(α0) =
∑
∀x∈B

u(x) =
∑

ci2
li

where 2li is the length of the orbit of xi and u(xi) = ci. This forces plj = 1
for some j; that is to say there is a fixed point of this action, say b1 = xj ∈ B.
Thus ρ(h)b1h

−1 = b1 for all h ∈ P . Consequently, ρ|P = conj(b1)|P and then
ρ|B∪P = conj(b1)|B∪P . Therefore, ρ is inner and the normalizer property
holds for G.
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