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Abstract

In this paper, we investigate the normalizer property for
the integral group ring of a torsion group. We show that
this property holds for locally finite nilpotent groups. A
necessary and sufficient condition for this property to hold
for any torsion group is also given.
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1 Introduction and Preliminary

Let G be a group and U(ZG) be the group of units of the in-
tegral group ring ZG of a group G. The problem of investigating
the normalizer NU(G) of G in U(ZG) has been already studied by
several authors and is related to some central problems in the theory
of group rings (see [7, 16] for detail). Clearly, NU(G) contains G and
also contains Z = Z(U(ZG)), the subgroup of central units of U .

Problem 43 in [16] asks whether NU(G) = GZ when G is finite.
The equality was first shown to hold for finite nilpotent groups by
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Coleman [3], and later extended by Jackowski and Marciniak [5] to all
finite groups having a normal Sylow 2-subgroup. In particular, this
property holds for all finite groups of odd order. We remark that there
is a close relation between this question and the isomorphism problem
(see Mazur [13, 14, 15]). Hertweck first found counterexamples to the
normalizer problem, and then, using them and a smart generalization
of Mazur’s results, he managed to construct a counterexample to the
isomorphism problem ([4]).

Recently, a certain amount of work on this topic has been done.
Parmenter, Sehgal and the author [11] proved that the normalizer
property holds for any finite group G, such that R(G) is not trivial,
where R(G) denotes the intersection of all nonnormal subgroups of
G. This has an important application in studying the hypercentral
units in integral group rings (see [1, 2, 9, 10]). In the meanwhile,
Marciniak and Roggenkamp [12] showed that this property holds for
finite metabelian groups with an abelian Sylow 2-subgroup. The
latter has been extended by the author [8]. In that paper, we first
gave a necessary and sufficient condition for the normalizer property
to hold for the integral group ring of a finite metabelian group. We
then confirmed that the property holds for several types of finite
metabelian groups in which a Sylow 2-subgroup is not necessarily an
abelian group. For instance, the normalizer property holds for the
integral group ring of a split finite metabelian group with a dihedral
Sylow 2-subgroup. Little is known about this property when the
group basis G is a torsion group. In this note, we first show that the
property holds for locally finite nilpotent groups (Theorem 2.2). We
then extend a result of Jackowski and Marciniak to arbitrary torsion
groups (Theorem 2.4).

Next we introduce some terminology and preliminary results.

Definition 1.1. Let G be a torsion group. A subgroup P is called
a Sylow p-subgroup of G for a prime number p, if P is a maximal
p-subgroup of G.

It is not hard to see that there exists a maximal p-subgroup of G
by Zorn’s Lemma. We remark that Sylow theorems for finite groups
are no longer true in this context. For example, not all Sylow p-
subgroups are conjugates of one another. We need the following
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result, and its proof can be found in [6] (1.B.10 Proposition).

Lemma 1.2. Let G be a locally finite nilpotent group. Then G =∑
Op, where Op is the normal maximal p-subgroup of G, and the

direct sum is taken over all primes p.

Every unit u ∈ NU(G) induces an automorphism ϕ of G such
that ϕu(g) = ugu−1 for all g ∈ G. We now consider the subgroup
AutU(G) formed by all such automorphisms and it is not hard to
see that the normalizer problem described in [16] is equivalent to the
Question 3.7 in Jackowski and Marciniak [5]:

“ Is AutU(G) = Inn(G) for all finite groups ?”

It is convenient to use this equivalent form to discuss the normal-
izer problem here and our notation follows that in [16].

2 The normalizer NU(G) for nilpotent

groups

In this section, we first confirm that the normalizer property holds
for all locally finite nilpotent groups, which extends Coleman’s result.
Then we give a necessary and sufficient condition for this property
to hold for any torsion group. We need the following lemma, which
is a special case of Theorem 9 of [15].

Lemma 2.1. Let G be a torsion group and P be any p-subgroup of
G. For any u ∈ NU(G), define ϕu ∈ Aut(G) such that ϕu(g) =
ugu−1 for every g ∈ G as before. Then restricted to the subgroup
P , the automorphism ϕu becomes inner. Moreover, we have ϕu|P =
conj(x0)|P for some x0 ∈ supp(u) ⊂ G. In particular, if G is a p-
group, then AutU(G) = Inn(G), so the normalizer property holds for
G.

We include a proof for completeness.
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Proof. Let u =
∑

u(x)x ∈ NU(G), where u(x) ∈ Z and x ∈ supp(u).
For every group element g ∈ G, ϕ(g) = ugu−1 is also a group element.
Rewrite u = ϕ(g)ug−1, and hence

∑
u(x)x =

∑
u(x)ϕ(g)xg−1(∗).

This forces that ϕ(g)xg−1 is in the support of u for all g ∈ G. Define a
left group action σg of G on supp(u) as follows: σg(x) = ϕ(g)xg−1. It
follows from (∗) that u(x) is a constant on each orbit of x. Restricting
the action to P , we have that the p-subgroup P acts on supp(u), and
thus every orbit must have a length of p-power. It follows that

±1 = ε(u) =
∑

cip
li ,

where ε is the augmentation map, pli is the length of the orbit of xi

and u(xi) = ci. This forces that plj = 1 for some j; that is to say there
is a fixed point of this action, say x0. Therefore, we have ϕ(g)x0g

−1 =
σg(x0) = x0 for all g ∈ P . Consequently, ϕ(g) = x0gx−1

0 , and thus
ϕ|P = conj(x0)|P . We are done.

Now we show that the normalizer property holds for locally finite
nilpotent groups, which extends Coleman’s result [3].

Theorem 2.2. Let G be a locally finite nilpotent group. Then the
normalizer property holds for G.

Proof. For any u ∈ NU(G), define ϕ such that ϕ(g) = ugu−1 as
before. Since ϕ2 is inner by Proposition (9.5) of [16], if some odd
power of ϕ is inner, then ϕ is inner too and we are done. We note
that it follows from Theorem 1 of [15] that AutU(G) is a torsion group
for any torsion group G. By taking a suitable odd power of ϕ, we may
assume that the order of ϕ is a power of 2. It follows from Lemma 1.2
that G =

∑
Op, where Op is the largest normal p-subgroup of G and

the direct sum is taken over all primes p. By Lemma 2.1, we have that
ϕ|Op = conj(xp)|Op , where xp ∈ supp(u). Since supp(u) is a finite
set, we can choose a large odd integer l such that (xp)

l are 2-elements
for all xp ∈ supp(u). Again by taking a suitable odd power of ϕ, we
may assume that all of these xp are 2-elements. Therefore, xp ∈ O2,
and this gives that ϕ|Op = conj(xp)|Op = id|Op for p 6= 2 since xp

commutes with every element of Op. We claim that ϕ = conj(x2).
To see this, we note that x2 ∈ O2, so conj(x2)|Op = id|Op = ϕ|Op for
p 6= 2 and conj(x2)|O2 = ϕ|O2 . We are done.
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In the remaining part, we extend the Jackowski and Marciniak’s
result ([5], 3.5 Theorem) to arbitrary torsion groups. We need the
following result and a proof can be found in [5] or [16].

Lemma 2.3. Let G be an arbitrary group and let u be a unit of ZG.
Then u ∈ NU(G) if and only if uu∗ ∈ Z(ZG).

For a fixed p-subgroup P of G, denote by IP the set of all involu-
tions in AutU(G) which keep P pointwise fixed:

IP = {ϕ ∈ AutU(G)|ϕ2 = id and ϕ|P = id}.
Theorem 2.4. Let G be any torsion group. If IP ⊆ Inn(G) for a
maximal Sylow 2-subgroup P of G, then AutU(G) = Inn(G).

Proof. Let u ∈ NU(G) and let ϕ ∈ AutU(G) be the normalized au-
tomorphism induced by u as before. It follows from Lemma 2.1 that
ϕ|P = conj(g0)|P for some group element g0 ∈ supp(u). Conjugating
ϕ by a group element if necessary, we may assume that ϕ|P = id|P .
Let v = u∗u−1. Then by Lemma 2.3, we have

vv∗ = (u∗u−1)((u−1)∗u) = u∗(u∗u)−1u = u∗(uu∗)−1u = 1.

Hence v is a trivial unit and then v = t for some group element
t ∈ G. This says that u∗ = tu, and moreover, ϕ2 = conj(t−1). As
mentioned earlier in the proof of Theorem 2.2, we may assume that
the order of ϕ is a power of 2. Furthermore, by the same reason,
we may assume that t is a 2-element. Since ϕ2|P = id|P , we have
t ∈ CG(P ) the centralizer of P in G. Note also that t is a 2-element
and P is a maximal Sylow 2-subgroup, so we conclude that t ∈ Z(P )
the center of P . As we mentioned earlier in the proof of Lemma 2.1,
we can define a group action from P to supp(u). Write u =

∑
u(x)x

as before. We recall that under this group action u(x) is constant on
each orbit of x and the length of each orbit is always a power of 2 in
the present case. Moreover, the length of the orbit of x is 1 if and
only if x ∈ CG(P ). Rewrite u = β0 + β1, where supp(β0) ⊆ CG(P )
and supp(β1) ⊆ G\CG(P ). Taking the augmentation of u, we obtain

±1 = ε(u) = ε(β0) +
∑

ci2
ki where ki ≥ 1.
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Hence ε(β0) is an odd number. It follows from the identity u∗ =
tu that β∗0 = tβ0. Let β0 =

∑
γhh. Then we have

∑
γhh

−1 =∑
γhth or

∑
γhh =

∑
γhh

−1t−1. Thus γh = γh−1t−1 for all h ∈
supp(β0). Since (h−1t−1)−1t−1 = h, this contradicts that ε(β0) is an
odd number unless h = h−1t−1 for some h ∈ supp(β0). We now
conclude that t−1 = h2 for some 2-element h ∈ CG(P ), and hence,
h ∈ Z(P ). Define an inner automorphism ρ = conj(h−1). It follows
that ρϕ|P = id|P and (ρϕ)2 = ρ2ϕ2 = conj(t)conj(t−1) = id, so
ρϕ ∈ IP . Consequently, ρϕ is inner and thus ϕ is inner as desired.
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